

Thibaut Mallet is a hydraulic engineer having 24 years of experience. After working in Sri Lanka and Mali from 1995 to 1998, he joined the Agricultural Ministry as a civil engineer. Following the 2002 flood in the Gard province and the Rhône flood of 2003, he became Project Director for the construction of small dams and reconstruction of levees (Aramon, Comps...). In 2006, he became Deputy General Manager of SYMADREM, a public institution in charge of the management of river and sea levees in the Rhône Delta River (240 km). He is now implementing a 400M Euros program to reinforce the Rhône levees. As part of the French regulation related to levees, he developed a model to evaluate breach probability following the guidelines of ICOLD bulletin 164. He presented his work at ICOLD annual meetings in 2014, 2016 and 2018.

Quantitative Risk Assessment for flood protection embankments using ICOLD Bulletin 164: the Symadrem experience

ICOLD Internal Erosion Workshop

Internal erosion workshop

Thibaut MALLET Deputy General Manager SYMADREM, Arles, France

Thibaut.MALLET@symadrem.fr www.symadrem.fr

ICOLD Ottawa, Friday 14 June 2019

Presentation of SYMADREM

A public institution responsible (25 people) for :

- operations and maintenance of levees in all circunstances
- levees improvement works (400 millions euros over 20 years)

3 river levees systems and 1 sea levees system

210 km embankment levees

25 km infrastructures

30 closing gates

350 crossing hydraulic structures

Inundations by breaches

in 1840, 1841, 1843, 1846, 1856, 1993, 1994, 2002, 2003

December 2003 Q = 11 500 m³/s T = 100 years

4 breaches Spilling volume ≅ 230 million m³ Cost of damages ≅ 700 million € November 1840 & May 1856

Spilling volume in 1840 \cong 2800 million m³

Spilling volume in 1856 \cong 1800 million m³

Estimated cost of damages today ≅ 2,8 billion €

Accidentology from 1840 to today

57 breaches (with inundation) and 57 breaches in progress (no inundation)

Development of probabilistic model

MOTIVATIONS FOR A PROBABILISTIC APPROACH

easing identification of the probabilistic nature of the hazard (data since 1816).

heterogeneous facies of the levees, due to the successive stages of their construction since the 12th century heterogeneities of foundation due to multiple changes of the Rhône bed.

6

Former bed

CDA ACB

This heterogeneity makes the deterministic approach of a safety factor illusory.

11 breach scenarios : 4 by concentrated leak erosion

In a former badger burrow partially plugged, not visible and unknown, after hydraulic fracturing

In a hole along a crossing structure

In a crossing crack along a former transition insufficiently treated

In a root of dead tree

Aller and a second seco

Backward erosion in a sand layer after uplift the silty blanket overlying the sandy soil strata **Contact erosion between gravel and silt** (case of breaches repaired in emergency situations)

Suffusion in gravel of a ancient pavement layer

(because levees were ancient ways of communication before their general raising in the 19th century)

2 by external erosion and 2 by sliding

Overflowing

Downstream slope sliding during flood

Fleuve Digue Zone protégie L=5 m L-3 m varkah Jm varkahfmun + arghe C=0.6 Pa - q = 33 $L=10^{6}$ max + $L=10^{6}$ max $y_{1} = 15.8 \text{ km}^{-1}$

Upstream slope sliding during flood draw down

10 CDA ACB

Conditional probability of breach

in function of load intensity by using subjective probabilities

(USBR 2012 adapted from Vick 2002)

Descriptor	Assigned Probability
Virtually certain	0,999
Very Likely	0,99
Likely	0,9
Neutral	0,5
Unlikely	0,1
Very Unlikely	0,01
Virtually Impossible	0,001

UNE 9-14 JUIN

Conditional probability of breach

in function of load intensity by using frequency probabilities

Distribution of critical gradient in sands

ic = 0,07

Probability of location (ex. former badger burrow)

Ancient levee with negative feedback Probability = 0,5

New levee with grid against burrowing Probability = 0,001

Probability of initiation

Concentrated Leak Erosion

Bonelli, Fell & Behnamed (2013)

initiation if $\tau > \tau_c$ $\tau = \frac{1}{2} \cdot R \cdot \alpha \cdot \rho_w \cdot g \cdot i$ $\alpha = (1 + \frac{kR}{4Lf})^{-1}$

Backward erosion

Sellmeijer (2011) initiation if *i* > *ic*

$$ic = \frac{\gamma'_p}{\gamma_w} \tan \vartheta \ \left(\frac{RD}{RD_m}\right)^{0.35} \left(\frac{U}{U_m}\right)^{0.13} \left(\frac{KAS}{KAS_m}\right)^{-0.02} \frac{d_{70}}{\sqrt[3]{\kappa L}} \left(\frac{d_{70m}}{d_{70}}\right)^{0.6} 0.91 \left(\frac{D}{L}\right)^{\left(\frac{D}{L}\right)^{\frac{0.28}{2}-1}+0.04}$$

Contact Erosion

Beguin(2011)

initiation if V > Vc $V = k.i = 7.10^{-2}.i$

Darcy Velocity	Probability of initiation	Comments
1 cm/s	0.01	No érosion
1,5 cm/s	0.5	
2 cm/s	0.9	Erosion

Suffusion

Wan & Fell (2004, 2007); Marot&al (2012)

Hydraulic Gradient	Probability of initiation	Verbal Qualification verbale
0,1	0.001	Virtually impossible
0,15	0.01	Very unlikely
0,2	0.1	Unlikely
0,3	0.9	likely
		14 CDA A

Probability of initiation by internal erosion mode

15 CDA ACB

Probability of non filtration

No filter Probability = 1 Filter but incertainties Probability = 0,1 Filter well designed and constructed Probability = 0,01

Probability of progression

17 CDA ACB

Probability of non detection and non intervention

$$P_{non \ detection} = \max(0,01; \left(1 - \frac{\Delta t_u}{P_s}\right))$$

$$P_{non\ intervention} = \min(1; \frac{\Delta t_i}{\Delta t_u})$$

Ps : duration between 2 visits (between 3 & 6 hours) checked during flood in november 2016 Δt_u : time from detection to failure

 Δt_i : intervention time (trafficable crest => 3 hours or not => 24 h) => checked in 2016 and 1993

For concentrated leak erosion

$$\Delta t_u \approx \frac{2\rho_d}{C_e \alpha \rho_w g \ i} Ln\left(\frac{R_u}{R_d}\right)$$

For backward erosion $\Delta t_u \approx 24h$

For contact erosion and suffusion $\Delta t_u = 48h$

Conditional probability of each scenario

Global probability of all internal erosion mechanisms

