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Estimation of Coarse-Grained Soils Erosion Rate using
Machine Learning

BACKGROUND Ellithy, G., Parida, S.

Approximately 40% of dam failures are caused by overtopping. e

Started in 2017 to improve on the USACE practice in evaluating
flood risk assessment of both dams and levees related to
breach by overtopping failures.

0 Understand of soil erodibility, especially non-cohesive
materials (sands and gravels) to estimate a realistic time and
width of breach.

Determination of erodibility parameters of coarse-
grained materials

Evaluation of the overtopping erosion mechanism of
coarse-grained soil mixes; surface erosion versus head-
cut erosion

0 Applicability of excess shear erosion model to coarse-grained
materials

Winfield —Pin ©ak Levee, MO Jun, 2008
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Estimation of Coarse-Grained Soils Erosion Rate using

Machine Learning
STUDY APPROACH Ellithy, G., Parida, S.

Design of 12 non-cohesive soil mixes that are grouped by D., and fines content:

oy |
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> Dgp: 2 mm to 50 mm o I 4
> Max size: 5 mm to 150 mm L RIS SN
5 a0 ‘\':- . R ::?"::h:____--
> Percent fines: 0 to 15% o TS SRS ST
> Clay content: O to 5% - e e

Grain Size - mm
—==Mix 1-1 Mix 1-2 Mix 1-3 mod —=—-Mix 1-4 — Mix 15 — ix 1-6
— =Mix 1-6 mod « # sMix 1-63 mod == -Mix 1-7 — Mix 1-2 —Mix 1-9 mod

Determine the erosion parameters of the soil mixes by performing box erosion tests. Each soil mix is
subjected to different flow rates.

Use Shallow Water Lidar (SWL) system measurements to capture the erosion progress and rate. SWL
uses two laser beams to record water and soil surface simultaneously.

Perform overtopping erosion tests on 1.2 m (4-ft)- high levee models constructed of the same 12 soil
mixes to assess the erosion mechanism (2" phase)
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Estimation of Coarse-Grained Soils Erosion Rate using

Machine Learning
TESTING SETUP Ellithy, G., Parida, S.

Width: 0.91 m (3 ft)
Depth: 0.46 m (1.5 ft)
Length: 18.3 m (60 ft)
Slope: -2% to +8%
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Estimation of Coarse-Grained Soils Erosion Rate using
Machine Learning

Ellithy, G., Parida, S.
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Estimation of Coarse-Grained Soils Erosion Rate using

Machine Learning
Ellithy, G., Parida, S.
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Estimation of Coarse-Grained Soils Erosion Rate using

Machine Learning
SOIL MIX PROPERTIES Ellithy, G., Parida, S.

Coarse Fine Coarse  Medium Fine silt Clay
. Gravel . Gravel Sand Sand Sand
3 3/4 #4 #10 #40 #200
- o\ EEEEEEinmn.
) N -
Nl ----Mix1-4 —-Mix1-5 ——Mix1-6mod s « «Mix1-6a mod ® Mix 14
80 '\‘.‘ 220 4 Mix 1-5
:*‘ ".'. -------- .;...!-. = Mix 1-6mod
_ 70 lh.. 910 Lot B :__ L _:‘."., # Mix 1-6a mod
g q £ — —T \-\\
L 50 \q\‘ £ 200 S S A ~ =
t * > — - ™ te,
g NN 2 -~ N "
° 40 N 2 — T . Eid
] N 1"'{, [7]
& v P~ T 2 190
) - = -
30 A < ~] 5 __,_.-..!-- .......
el N ‘\\ = * Tl e
L) T . . -~
20 N IR 18.0 e
[~ [~= [~ “"I--._.
10 NS i
ROV = S [™=oq
0 ~eil —— HH o =t 17.0
100 10 475 2 1 0425 0.1 0.075 0.01 0.002 0.001 #4050 60 7080 90 100 110 120

Moisture Content (%)
Grain Size (mm)

Compaction curves for soil mixes using

Grain size distribution standard Proctor test (ASTM D-698).
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Estimation of Coarse-Grained Soils Erosion Rate using

Machine Learning
Ellithy, G., Parida, S

a) Mix 1-4 vs 1-5 b) Mix 1-6 mod vs Mix 1-6a mod a) Mix 1-4 vs 1-5 b) Mix 1-6 mod vs Mix 1-6a mod
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Machine Learning
Ellithy, G., Parida, S.
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SOIL MIX PROPERTIES Ellithy, G., Parida, S.
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Compaction curves for soil mixes using

Grain size distribution standard Proctor test (ASTM D-698).
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Estimation of Coarse-Grained Soils Erosion Rate using

Machine Learning
MULTI-SCALE MODELING Ellithy, G., Parida, S.

Data Obtained from
Flume box
experiment

Physics Informed, Multi
scale model for Erosion
Rate prediction

Artificial Neural
Network

Non-linear . Data is collected from the flume box experiment.
regression to 2. First the data is used to fit a non-linear model based on known physics of
capture the system
interpretable 3. The data and the corresponding prediction of the model is used to train an
artificial neural network.
4. Less data, aided by low resolution system physics.
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Estimation of Coarse-Grained Soils Erosion Rate using

Machine Learning
Ellithy, G., Parida, S.

=

The mid-section (section 5) of the box was chosen to analyze erosion behavior

2. Data is divided into bins both temporally and spatially and average of each bin is considered as the

representative value.

3. To image the evolution of the soil and water surfaces with respect to time using the Levenberg-
Marquardt algorithm (Levenberg 1944).
4. To choose the best model, a series of competing models were tested for each zone and the model

which yielded the least R2 error was chosen.
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Machine Learning
Ellithy, G., Parida, S.
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Estimation of Coarse-Grained Soils Erosion Rate using

Machine Learning
Ellithy, G., Parida, S.

TEST RESULTS
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Estimation of Coarse-Grained Soils Erosion Rate using

Machine Learning
TEST RESULTS Ellithy, G., Parida, S.

Summary of soil mix properties and test conditions

Dsq Fines USCS wc% Dry Initial Initial Initial
(mm) Content Density Average Average Erosion
(%) (kN/m3) Bed Shear Velocity Rate
(Pa) (m/sec) (cm/sec)
1-1 2 13 0 SW 6 19.9 0.061 2 16.9 14 0.077
(0.13)
1-4 5 25 0 GW 6 18.9 0.057 2 15.8 1.37 0.081
(0.175)
1-5 5 13 5 GW-GC 7 19.6 0.057 2 15.8 1.37 0.131
1-6 mod 5 13 15 GC 7 21.2 0.09 6 37.4 2.1 0.068
1-6a mod 5 25 15 GC 6 21.5 0.09 6 37.4 2.1 0.037
1-7 20 75 0 GP 3 20.4 0.057 2 15.8 1.37 0.02
(0.03)
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Erosion Rate, & (mm/hr)

Estimation of Coarse-Grained Soils Erosion Rate using

Machine Learning
Ellithy, G., Parida, S.
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HEC 18- Erosion rate vs. velocity for a wide range of geomaterials (Briaud et al. 2011)
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Estimation of Coarse-Grained Soils Erosion Rate using

Machine Learning
TEST RESULTS Ellithy, G., Parida, S.

Slope 2%
Q= 0.057 m3/sec (2 cfs)

.. t,'f
Mix 4 — zero% fines Mix 5 — 5% fines, 2% clay
max size = 25 mm (1 in) max size = 12.5 mm (1/2 in)
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Ellithy, G., Parida, S.

O Erosion rate significantly decreases with time. This reduction could not be calculated if the erosion measurements were
not taken at small time intervals from the beginning of the test using SWL.

0 The initial erosion rate and the level of reduction over time is affected not only by D¢y, but also by the fines content and
the coarser portion of the soil mix:

» Compared to mixes with similar coarser portion and D, , increased fines and clay content (from zero to 15%)
causes the erosion rate to decrease by one half

» For the same clay content, the larger the coarse portion of the soil mix, the slower the initial erosion rate is.
Erosion rate decreased by one half when the max size increased from 13 mm to 25 mm

» The initial erosion rate is reduced by almost 4 times when the D;, increased from 2 mm to 20 mm

0 The erosion rate was shown to be strongly correlated to the acting bed shear nonlinearly. The bed shear temporal and
spatial variation was calculated using the soil and water profile images as were obtained by processing the SWL data
using machine learning techniques. This ensured careful nonlinear regression by not overfitting on noisy data.

0 Further data processing is needed to fine-tune and quantify the erosion rate at different acting bed shear along the full soll
profile.
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