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Design criteria

q Project flood: typically 1’000-years flood
q Safety check flood: 10’000 years flood 

or PMF

High-velocity jets and scouring

u at concrete dams where spillways are combined 
with the dam structure

u Gated or ungated crest spillways (arch dams only)
u Chute spillways followed by a ski-jump
u Orifice spillways

1.Introduction
Safety of dams during flood events
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1.Introduction
High scour potential at high concrete arch dams 

in narrow valleys
Example of Khersan III Dam Project in Iran

Spillway facilities:

- Two-bay chute flip bucket spillway
4’240 m3/s (at PMF Flood El. 1426.30)

- Uncontrolled crest spillway 3’360 m3/s
(at PMF Flood El. 1426.30)

- Two bottom outlets 395 m3/s
(at PMF flood El. 1426.30)

TOTAL PMF  ~ 8’000 m3/s
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1.Introduction
High scour potential at high concrete arch dams 

in narrow valleys
Example of Khersan III Dam Project in Iran
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Karun III, 205 m, Iran
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1.Introduction
Tendency of today’s spillway design

Increasing of the unit discharge of high-velocity jets 
leaving spillway structures

- Gated chute flip bucket spillway:200 to 300 m3/sm

- Uncontrolled crest spillways: 70 m3/sm

- Gated crest spillways: up to 120 m3/sm

- Low level orifice spillways: 300 to 400 m3/sm
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Kariba on Sambezi, 140 m 
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1.Introduction
The challenge of dam designers

Practical design questions:

Ø What will be the evolution and extent of scour 
downstream of the dam at the jet impact zone?

Ø Are the stability of the valley slopes and the 
foundation of the dam itself endangered?

Ø Is a tailpond dam required to create a water cushion 
and how does it affect the scour depth?

Ø Is a pre-excavation of the rocky river bed required 
and/or has the plunge pool to be lined?

Ø Is the powerhouse operation influenced by scour formation?
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(Bollaert, 2002)
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2.  The scour process
Physical processes in rock scour formation

free falling jet behavior in the air and aerated jet
impingement

plunging jet behavior and turbulent flow in the
plunge pool

pressure fluctuation at the water-rock interface
propagation of dynamic water pressures into
rock joints

hydrodynamic fracturing of closed end rock
joints and splitting of rock in rock blocks

ejection of the so formed rock blocks by
dynamic uplift into the plunge pool
break-up of the rock blocks by the ball milling
effect of the turbulent flow in the plunge pool

formation of a downstream mound and
displacement of the scoured materials by sediment
transport
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2.  The scour process
Jet behavior in the air

Jet trajectory
- Location of jet impingement

Ballistic equations for ideal jet

Prototype jets
- Air drag
- Disintegration of the jet in the air
- Initial flow aeration in long chutes
- Spread of the jet during fall

Hydraulic model tests Karun III
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2.  The scour process
Jet behavior in the plunge pool and 

pressure fluctuations
- air entrainment when jet plunges the pool

(40 to 60 % at 30 m/s)

- high-velocity, two-phase turbulent shear 
layer flow and macroturbulent flow

- shear layer flow produces severe pressure 
fluctuations at the water-rock interface

- dynamic pressures are different for developed
jet impact (more severe) and core jet impact

not every water cushion has a retarding effect 
on the scour formation

Hydraulic model tests Karun III
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Impact jet types 

Ø Core jet impact: Y/D < 4 ÷ 6 

Ø Developed jet impact: Y/D > 4 ÷ 6 

2.  The scour process
Physical processes in scour formation
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2.  The scour process
Propagation of dynamic water pressures into 
rock joints, hydrodynamic fracturing and uplift

Ø transient flow in joints is governed by 
the propagation of pressure waves

Ø closed-end rock joints
- reflection and superposition

of pressure waves
- hydrodynamic loading at the

tip of the joint

Ø open-end rock joints
- pressure waves will break up

the remaining rock bridges
- dynamic uplift will eject the

rock blocks into the macro-
turbulent plunge pool flow

Hydraulic model tests 
Karun III

e

L

Jet impact = 
continuous 
energy 
source

a

L
a



18

2.  The scour process
Ball milling effect of the turbulent flow in the plunge 

pool and formation of a downstream mound
• rock blocks taken up by the

macroturbulent eddies

• further break-up by the ball-milling
effect

• downstream displacement by flow

• deposited on the mound or carried
away by sediment transport

• mound may limit scour depth but
also raise the tailwater level

Hydraulic model tests Karun III
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3.  Scour evaluation methods
General overview
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3.  Scour evaluation methods
Existing scour evaluation methods

- Empirical approaches based on laboratory and field
observations

- Analytical-empirical methods combining laboratory and
field observations with some physics

- Approaches based on extreme values of fluctuating
pressures at the plunge pool bottom

- Techniques based on time-mean and instantaneous
pressure differences and accounting for rock 
characteristics

- Scour model based on fully transient water pressures in
rock joints 

a

b

c

d

e
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3.  Scour evaluation methods
Empirical formulae

� 

Y = t + h = K ⋅
Hy ⋅ qx ⋅ hw

gv ⋅ dm
z

where:

t = scour depth below initial bed level
K = constant
q = specific discharge
H = fall height
h = tailwater depth (measured from initial bed level)
dm = characteristic sediment size or rock block diameter d

Mason & Arumugam (1985)

26 sets from prototype data
47 from model tests
K = (6.42 – 3.10H0.10)
v = 0.30
w = 0.15
x = (0.60 – H/300)
y = (0.15 – H/200)
z = 0.10
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3.  Scour evaluation methods
Semi-empirical equations

Laboratory and field observations
are combined with some physics:
u initiation of motion of the bed material by shear stress
u energy conservation equations
u geomechanical characteristics
u angle of impingement of the jet
u steady-state two-dimensional jet diffusion theory
u aeration effects

Hydrodynamic and geomechanical characteristics
are combined in Annandale’s 
Erodibility Index Method
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3.  Scour evaluation methods
Approaches based on extreme values of 

fluctuating pressures at the plunge pool 
bottom

pmax

pmin

Δp

Δp

time

p
pmax

pmin

Δp

Δp

time

p

Maximum pressure differences of 1.50 – 1.75 times the incoming
kinetic jet energy
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3.  Scour evaluation methods
Techniques based on time-mean and 
instantaneous pressure differences and 

accounting for rock characteristics
Instead of maximum pressure differences,
time-averaged or instantaneous pressure
differences are considered

Fluctuating pressures have to be known at
the plunge pool bottom but also inside the
rock joints

Pressure field underneath the concrete slabs
or rock blocks is assumed constant over the surface
of the element and equal to the pressure at the entrance
of the joints, i.e. at the surface
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3. LCH-EPFL approach
Scour model based on 

fully transient water pressures in rock joints
Transient water pressures in rock joints due to 
high-velocity jet impact (Bollaert, 2002):

Ø reflection and superposition of pressure
waves

Ø resonance pressures

Ø quasi-instantaneous air release and
re-solution due to pressure drops

Ø pressure wave celerity highly influenced 
by free air bubbles in the joints

Ø net uplift pressures of 0.8 to 1.6 times 
the incoming kinetic energy

Comprehensive Scour 
Method
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4.  New LCH-EPFL approach 
Comprehensive Scour Method
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Modules of the approach
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4.  New LCH-EPFL approach
Comprehensive Scour Method
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Modul « falling jet »
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4.  New LCH-EPFL approach
Comprehensive Scour Method
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Parameters of « plunge pool « module
Ø Y/Dj (diffusion of jet in the water)

Ø mean dynamic pressure coefficient
(Cpa) in jet axis

Ø dynamic pressure fluctuation (C’pa) 
in jet axis

Ø influence zone  Δx of 
dynamic pressure fluctuation 

Ø mean dynamic pressure coefficient
(Cpa) in radial direction

Ø dynamic pressure fluctuation (C’pa) 
in radial direction

4.  New LCH-EPFL approach
Comprehensive Scour Method
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The plunge pool module
Mean dynamic water pressures
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RMS value of pressure fluctuation C’pa :
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The plunge pool module
Fluctuation of dynamic water pressures
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The rock module
Main parameters

θ1

θ2

θ = 0.5·(θ1 + θ2)

Z

DjDout
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Hydrodynamic parameters
1.)  Maximum dynamic pressure coefficient Cmax

p (closed end fissures)
2.)  Characteristc amplitude of pressure cycles Δpc (closed end fissures)
3.)  Characteritic frequency of pressure cycles fc (closed end fissures)

4.)  Maximum dynamic impulsion  Cmax
I on rock blocks (open end fissures)

Geomechanical parameters
1.)  Properties of rock joints

2.)  Rock type and strength (compression and tensile 
strength, fracture persistence and toughness, 
permeability, density,..) 

3.)  In-situ conditions (natural stresses, geometry of 
valley, geology,…)

CFM

DIM
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The rock module
Hydrodynamic pressure peaks inside rock fissures

1.)  Maximum dynamic pressure Cmax
pd at the end of a closed fissure

C+
pd

Γ + =   4 +2�Y/Dj  for Y/Dj < 8 
Γ + = 20   for 8 ≤ Y/Dj ≤ 10 curve of maximum values 
Γ + = 40 - 2�Y/Dj  for 10 < Y/Dj  

           (7.15) 
Γ + = -8 + 2�Y/Dj  for Y/Dj < 8 
Γ + =  8    for 8 ≤ Y/Dj ≤ 10 curve of minimum values 
Γ + = 28 - 2�Y/Dj  for 10 < Y/Dj  

⎟
⎠
⎞⎜

⎝
⎛⋅⋅π⋅σ=
W
a

faK maxI
y

Pmax

[ ] ( )
g2

V
CC

g2

V
CPaP

2
j'

papa

2
jmax

pdmax

⋅φ
⋅⋅Γ+⋅γ=

⋅φ
⋅⋅γ= +

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
a/B or c/W  [-]

f 
(a

/B
) 

 [
-]

EL for a/c = 0.2; c/W = 0.1
EL for a/c = 1.0; c/W = 0.1
EL for a/c = 0.2; c/W = 0.5
EL for a/c = 1.0; c/W = 0.5
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Stress intensity factor
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The rock module 
Comprehensive Fracture Mechanics(CFM) 

aB

2c
W W

aB
e

σWater σWater

e
B

2c
W

σWater

e
KI

KI

KIf

Semi-elliptical joints (EL) Single edge joint (SE) Center crack joint (CC)
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Brittle fracture (Cmax
p):

KI >  KI ins (fracture toughness)

Crack propagation by fatigue  (Δpc, fc)):
KI <  KI ins (fracture toughness)

KI, T    = (0.105 to 0.132)T+(0.054σc)+ 0.5276 

KI, UCS= (0.008 to 0.010)UCS+(0.054σc)+ 0.42 

dLf

dN
= Cr ⋅ ΔKI / KIc( )mr
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Fu and Fo: forces acting 
in upward and downward direction 

Gb: immerged block weight 

Fsh: shear forces along the joint

The rock module 
Dynamic uplift pressures acting on rock blocks -

Dynamic Impulsion (DI)

( ) ( )wrb
2
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uptpulse hg2V ⋅⋅=Δ

( )∫
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Fo(x, t)

x

Fsh(t,ej)Gb

Fu(x, t, ej1(t), ej2(t))

Fo(x, t)

x

Fsh(t,ej)

pup = Cup · V2/2g
V2/2g: 
incoming kinetic energy
Lf: Length of fissure
c: water hammer velocity

100-200 m/s

Δtup = Tup · 2Lf/c
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⎠
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⎜
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⎜
⎜
⎝

⎛
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Maximum net impulsion:
Iup = pup·Δtup = Cup·Tup·(V2Lf/gc) = CI·(V2Lf/gc) [m.s]

Cup: net uplift pressure coefficient (close to 0.35)
Tup : Time coefficient
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Real scour 
geometry

Goal: Interaction between scour geometry and dynamic 
pressure fluctuations at the rock surface

Influence of the scour hole geometry – lateral confinement of 
water jet (Manso, 2006):

4. New LCH-EPFL approach
Scour model based on 

fully transient water pressures in rock joints
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Parameters
• Jet velocities 7.5 – 30 m/s, Tu = 4 – 8 %, 
• Pool depth Y/D = 1.04 to 12.4 (sub); degree of break-up L/Lb máx. 0.44
• Diameter of scour confinements : Dc=40/80/120 cm; Dc/D = 5.6,11,16.7
• Depth of scour steps : he=20/40/60 cm; t/D ~ 2.8, 5.6, 8.3

Modular confinements 
Dc/D = 5.5, 11, 16.5
t/D= 2.7, 5.4, 8.1

FC
SC

TC

Pressure 
transducers

t

h
Y

Westside 
weir

Outlet 
nozzle

Pool 
bottom

fissure

Dc/D=11 
t/D=2.7Lateral 

evolution

scour 
evolution

SC1 Dc

D
Modular confinements 
Dc/D = 5.5, 11, 16.5
t/D= 2.7, 5.4, 8.1

FC
SC

TC

Pressure 
transducers

t

h
Y

Westside 
weir

Outlet 
nozzle

Pool 
bottom

fissure

Dc/D=11 
t/D=2.7Lateral 

evolution

scour 
evolution

SC1 Dc

D

Pool

Jet

Fissured 
rock mass

Influence of the scour hole geometry – lateral 
confinement of water jet (Manso, 2006):
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Influence of the scour hole geometry – lateral 
confinement of water jet (Manso, 2006):
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At pool bottom, below jet axis  t/D = 2.8 
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Pressure fluctuations: lateral evolution of scour
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Influence of the scour hole geometry – lateral 
confinement of water jet (Manso, 2006):
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Shear 
Layer

Ring vortex (shear eddy cell) - WIDE
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3.  Scour evaluation methods
General overview
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Maletsunyane Falls (192 m), Lesotho

PhD Research Project 
09.2006 - 06.2011

Matteo Federspiel

Fluid-mechanical interaction between high-velocity 
transient flow and rock blocks 

in plunge pools for scour assessment

4. New LCH-EPFL approach
Scour model based on 

fully transient water pressures in rock joints 
Interaction of a rock block with dynamic pressures
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Verzasca Dam, Switzerland
Angel Falls, Venezuela

4. New LCH-EPFL approach
Interaction with a rock block
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Water restitution

Water supply structure

Water supply

New experimental facility 
Yellow: “measurement box”
Orange: “intelligent block”

New level of the plunge 
pool bottom

Plunge pool

Water level 
regulation

Nozzle

Experimental facility of Federspiel
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New experimental facility 
Measurement box and highly instrumented block 
(“Intelligent block”)

Top view

Axonometric view

Axonometric view

Highly instrumented block
“Intelligent block”

Measurement box



48Y = 0.0 m and V = 9.2 m/s

New experimental facility 
Measurement box and highly instrumented block 
(“Intelligent block”)
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Configurations:

ØJet impact position on the intelligent block
Centered, on the vertical fissure axis: left side and 
right side, on the corner and radial

ØThe intelligent block lateral movement guidance
Two contact points or eight contact points 

ØThe degree of freedom of the intelligent block
Free or fixed 

Total configuration tested: 13

4. New LCH-EPFL approach
Interaction with a rock block
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CONFIGURATION JET POSITION BLOCK GUIDE CONFIGURATION JET POSITION BLOCK GUIDE

CENTRED FREE 2 CONTACT
POINTS

RIGHT
SIDE FREE 2 CONTACT

POINTS

CORNER FREE 2 CONTACT
POINTS

CENTRED FREE 8 CONTACT
POINTS

FIXED 8 CONTACT
POINTSCENTRED

FREE 8 CONTACT
POINTS

8 CONTACT
POINTSFIXED

RIGHT
SIDE

FREE 8 CONTACT
POINTS

8 CONTACT
POINTSFIXED

LEFT
SIDE

LEFT
SIDE

FREE 8 CONTACT
POINTS

8 CONTACT
POINTSFIXED

CORNER

CORNER

CE SI

CO/CN

CENTRED

LEFT SIDE

RIGHT SIDE

CORNER

FREE

FIXED

2 CONTACT
POINTS

8 CONTACT
POINTS

SL

RIGHT
SIDE

CR SR

CE

SI

CO

CR

CR_F

SR

SR_F

SL

SL_F

CN

CN_F

CONFIGURATION JET POSITION BLOCK GUIDE CONFIGURATION JET POSITION BLOCK GUIDE

FREE 8 CONTACT
POINTS

8 CONTACT
POINTSFIXED

RADIAL

RR

RR_F

RADIAL

RR

4. New LCH-EPFL approach
Interaction with a rock block
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Test parameters 
Ø Water level in the plunge pool 

Ratio Y/D where Y is the water level and D is the nozzle outlet 
diameter - Y variable between 0.0 m and 0.7 m to generate core jet  
(Y/D < 4), transition jet (4< Y/D < 6) and developed jet (Y/D > 6)

Ø Nozzle outlet diameter 
D equal to 57 or 72 mm

Ø Velocity of the vertically impacting jet 
Vmax 30 m/s or Qmax 120 l/s

Ø Position of the transducers
Pressure: 95 / Displacement: 2 / Acceleration: 1

4. New LCH-EPFL approach
Interaction with a rock block
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PSD_Power Spectral Density 
FB_CE with jet velocity V = 27.0 m/s 

Core jet: Y = 0.10 m and V = 27 m/s (Y/D = 1.39)                                                                             Developed jet: Y = 0.60 m and V = 27 m/s (Y/D = 8.33) 

Two zones of increased PSD have been detected (10-100 Hz and 
100-200 Hz), which might be related to the eigen frequencies of the travelling 
pressure wave in the joint and to the block inertia. 
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4. New LCH-EPFL approach
Interaction with a rock block
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Maletsunyane Falls (192 m), Lesotho

PhD Research Project 
04.2014 - 04.2014

Rafael Duarte

Influence of air entrainment on rock scour 
development and block stability in plunge pools 

4. New LCH-EPFL approach
Scour model based on 

fully transient water pressures in rock joints 
Interaction of a rock block with dynamic pressures
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Air cooncentration, Vaw = 4.9122m/s, Air0. Plunging jet
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Influence of air concentration
The mean density 𝜌aw of the air-water jet inside the pool is with 𝜌a and 𝜌w as 
air and water densities

• 𝝆𝒂𝒘 =
𝟏

𝟏(𝜷
𝝆𝒘 +

𝜷
𝟏(𝜷

𝝆𝒂

Kinetic energy per unit volume of the air-water jet at the plunge section

• 𝑬𝒌 =
𝟏
𝟐
𝝆𝒂𝒘𝑽𝒊𝟐

Time-averaged pressure coefficient

• 𝑪𝒑𝒂

𝑪𝒑
= 𝟏 + 𝟎. 𝟒𝜷

Influence of jet aeration on rock scour
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Influence of jet aeration on rock scour –
Case study Kariba (Rafael Duarte) 
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5. Difficulties in scour evaluation
Which is the appropriate formula or theory ?

Most formulae are developed for a specific case,
Only some of general applicability

- careful selection of appropriate formulae

Results often show a wide scatter
- statistical analysis of the results
- sensitivity analysis for characteristic rock block size

Comparison with prototype scour measures with similar 
geological conditions
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5.  Difficulties
How model tests should they be performed and 

interpreted ?

a) appropriate choice of a material
that will behave dynamically in
the model as fissured rock does
in the prototype

b) grain size effects

c) aeration effects

Three 
difficulties:

Hydraulic model tests at LCH  for Ostour dam in Iran
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5.  Difficulties
How to analyze prototype observations properly ?

Questions to be answered:
1. What was the duration of the operation of the spillway for

different specific discharges (discharge-duration curve)?
An example of discharge-duration curve of a spillway is given in Figure below.

2. Which was the prevailing, specific discharge which formed the scour depth?

3. Was the duration of this specific discharge long enough to create ultimate scour depth?
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4.  Difficulties
Can ultimate scour depth form during operation

and what is the scour rate ?
Depth of scour is depending on
duration of spillway operation:

where:

(t+h) = ultimate scour
Te = instant at which equilibrium is attained
T = time

Ultimate for a certain flood occurs only if the 
duration of the discharge is long enough

(t + h)(T) = (t + h)end (1 – e -aT/T
e)
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5.  Difficulties
Which will be the prevailing discharge for scour 

formation during a flood event ?

Time

Specific
discharge

qp

qi

q2
q1
qu

Tp

Ti

T2
T1
Tu

t0 t1 ti tu Time

Specific
discharge

qp

qi

q2
q1
qu

Tp

Ti

T2
T1
Tu

t0 t1 ti tu

Determination of scour

qe (T = Te)
q1 (T1 < Te)
q2 (T2 < T1 < Te)
……..
qpeak (Tpeak < Ti < Te)

Discharge which gives the deepest 
scour is the prevailing discharge
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5.  Design discharge
Spillway design discharge and scour evaluation

Designing scour 
mitigation
measures for the 
project or
safety check flood is 
too conservative!

Design discharge with 
a probability of 
occurrence of 50 % 
during the useful
lifetime of a dam is 
reasonable
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6.  Measures for scour control
Overview of measures for scour control

Active measures

Passive measures: Protecting dam abutments with anchors

Avoid scour 
formation completely Lined plunge pools

Limit the extent 
of the scour

Limitation of the specific spillway discharge

Forced aeration and splitting of jets

Increasing tailwater depth by tailpond dam

Pre-excavation of the plunge pool
Influence the location

of the scour Type and design of spillway
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6.  Measures for scour control
Concrete lined plunge pools

Thickness of the lining is limited by construction and economical reasons

High tension or pre-stressed rock anchors are required to ensure the lining
stability regarding dynamic loading

Surface of the lining has to be protected against abrasion

Construction joints have to be carefully sealed (double waterstops)

A drainage system can reduce static uplift during dewatering and dynamic 
uplift during operation

In the case of cracks in the lining the response of the drainage system has to 
be considered, i.e. dynamic uplift can not be excluded
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Passive measures: 

Anchoring of rock 
slope

Protection against 
toe scouring 

6. Measures for scour control
Pre-excavation and anchoring
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KARIBA   

H 128 m 

L 617 m  

C 181 km3

7. Case study Kariba in Sambia -
Simbabwe
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7. Case study Kariba in Sambia -
Simbabwe
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Normal TWL without spillage : 
depending on powerstations 
activity

Deepest section is short

The more general case is  

30 m

50 m

80 m

Maintenance works area

7. Case study Kariba in Sambia - Simbabwe

B. Goegel
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Normal TWL without spillage : 
depending on powerstations activityMaintenance works area

7. Case study Kariba in Sambia - Simbabwe

B. Goegel
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6.Fallbeispiel Kariba in Sambia -
Simbabwe
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KARIBA   

H 128 m 

L 617 m  

C 181 km3

SOUTH

NORTH

7. Case study Kariba in Sambia -
Simbabwe
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7. Case study Kariba in Sambia -
Simbabwe
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7. Case study Kariba in Sambia -
Simbabwe
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7. Case study Kariba in Sambia -
Simbabwe
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7. Case study Kariba in Sambia -
Simbabwe
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11.05.1966     test 6 gates full open

7. Case study Kariba in Sambia -
Simbabwe
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11.05.1966     test 6 gates full open

7. Case study Kariba in Sambia -
Simbabwe
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11.05.1966     test 6 gates full open

7. Case study Kariba in Sambia -
Simbabwe
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7. Case study Kariba in Sambia -
Simbabwe
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7. Case study Kariba
hydraulic model tests
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7. Case study Kariba
hydraulic model tests
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6.Kariba in Sambia – Simbabwe  
Hydraulische Modellversuche 
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7. Case study Kariba
hydraulic model tests
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7. Case study Kariba
hydraulic model tests
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7. Case study Kariba
hydraulic model tests
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Test	configurations
N° Gate N° Gates 

(-) 
Gate 

opening 
(%) 

Spillway 
discharge 

(m3/s) 

Powerhouses 
discharge 

(m3/s) 
Tailwater 
level (m) 

Velocity 
measurements 

1 
 

3 non 
adjacent 

gates 
100 ≈4,500 ≈1,400 ZRA 

curve No 

3 
 

2x2 
adjacent 

gates 
100 ≈6,000 ≈1,400 ZRA 

curve No 

5 
 

6 
adjacent 

gates 
100 ≈9,000 ≈1,400 ZRA 

curve Yes 

7 
 

6 
adjacent 

gates 
100 ≈9,000 0 ZRA 

curve No 

8 
 

5 
adjacent 

gates 
100 ≈7,500 ≈1,400 ZRA 

curve Yes 

	

7. Case study Kariba
hydraulic model tests
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7. Case study Kariba in Sambia -
Simbabwe
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Physical	modeling

Reshaped 
geometry no 1

Left: reshaped 
geometry no 2
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7. Case study Kariba
hydraulic model tests



102102Pressure	measurement positions

Physical	modeling

Axis 
B

Axis 
A

Axis 
C
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1st reshaped	
Geometry

2nd reshaped	
Geometry

Physical	modeling
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8. Conclusions
u The physical understanding of the scouring process has been

strongly improved over the last 15 years
u Theoretical models are available which take into account the

interaction between dynamic pressure fluctuations and fissured
rock mass (Comprehensive Scour Method).

u The LCH-EPFL model considers the essential physical 
processes but the rock mass characteristics have to be known 
and have to be used with engineering judgement

u Prototype data with complete historical record of spillway
discharge data which created the scour are helpful for further
improvement of comprehensive scour model

Scour evaluation in space and time still 
remains a challenge for dam designers
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