

UNSW Spillway Erosion Project

Dr Steven Pells, Dr Kurt Douglas, Prof. Robin Fell, Prof. Bill Peirson

Never Stand Still

Faculty of Engineering

Dams Risk – Spillway Rock Erosion

- Backward erosion piping of dams and levees
- Global backward erosion piping in dams
- Prediction and numerical modelling of cracking in embankment dams
- Prediction of potential erosion in unlined spillways

The 'Dams Risk' Project

Australian Government

Hydro Tasmania The power of natural thinking

Dams Risk – Spillway Rock Erosion

- Prediction of potential erosion in unlined spillways
 - Field studies of dam spillways from dams around Australia and South Africa (plus documented USA) with significant erosion and/or flows.
 - Laboratory flume studies focussing on potential pressure variations that can be induced in rock joints from parallel spillway flow.
 - New empirical and analytical methods of quantifying erosion created.

Erosion Mechanisms

Erosion Mechanisms

- Requires consideration of BOTH the:
 - Geological Domains primarily governed by the structural geology.
 - Hydraulics primarily the spillway geometry and roughness and the direction of flow with respect to major defect orientations.
- Combined they are considered Erosion Domains
- Mechanisms are often very similar to slope instability mechanisms exacerbated by subhorizontal water pressures.

Erosion Mechanisms – Copeton Dam

Erosion Mechanisms – Copeton Dam

Erosion Mechanisms – Anthony Dam

Erosion Mechanisms - Brogo Dam

Jointed rock on smooth persistent bedding susceptible to removal

Smooth, persistent bedding resisting erosion - no exposed surfaces or open joints against which stagnation pressures can form

Erosion Mechanisms – Harding Dam

Erosion Mechanisms – Goedertrouw Dam

Erosion Mechanisms – Klipfontein Dam

Erosion Mechanisms – Applethwaite Dam

Bedding dipping upstream

Joint dipping downstream facilitates water pressure intrusion and wedge release

Erosion Mechanisms – Dartmouth Dam

Simple slope stability mechanisms

Wedge Failure

Erosion Mechanisms – Moochalabra Dam

Erosion Mechanisms – Moochalabra Dam

Erosion Mechanisms – Tuttle Ck Dam

Headcutting – erosion of weak shale beds beneath stronger limestone beds (courtesy USACE)

PSI

Erosion Mechanisms – Dartmouth Dam

Erosion Mechanisms – Pindari Dam

Erosion Mechanisms -Copeton Dam

Fault zone + Sheet joints + High stress =

Erosion Mechanisms -Copeton Dam

(Depth approx. 30m)

Erosion Mechanisms – Mokolo Dam

Erosion Mechanisms – Kununurra Diversion Dam

Erosion Mechanisms – Kununurra Diversion Dam

Erosion Mechanisms – Garden Route Dam

Erosion Mechanisms – Hartebeespoort Dam

Erosion Mechanisms Split Rock Dam

Persistent joins dipping upstream resist erosion (except where blast damaged)

Erosion Mechanisms – Mackenzie Dam (top) Anthony Dam (bottom)

Rowallan dam

Rock Mass Indices

Bieniawski 'RMR' (1974)

 $RMR = \sum$ (classification parameters) + discontinuity orientation adjustment

Barton (1974) 'Rock mass quality' ('Q-system')

$$Q = \left(\frac{RQD}{J_n}\right) \left(\frac{J_r}{J_a}\right) \left(\frac{J_w}{SRF}\right)$$

Hoek (1995) 'Geological Strength Index' ('GSI') $GSI = RMR'_{76} = F_1 + F_2 + F_3 + F_4 + 10$

Kirsten (1982) 'excavatability' ('Kirsten Index') $K = \left(\frac{RQD}{J_n}\right) \left(\frac{J_r}{J_a}\right) M_s J_s$

Rock Mass Indices

1.	ROCK QUALITY DESIGNATION	(RQD)		4.	JOINT ALTERATION NUMBER (a) Rock wall contact	$\langle J_a \rangle$	φ_r (approx.))
A. B. C. D. E.	Very poor Poor Fair Good Excellent	0- 25 25- 50 50- 75 75- 90 90-100	 Note: (i) Where RQD is reported or measured as ≤10 (including 0) a nominal value of 10 is used to evaluate Q in Eq. (1) (ii) RQD intervals of 5, i. e. 100, 95, 90, etc. are sufficiently accurate 	А.	Tightly healed, hard, non-soften- ing, impermeable filling i. c. quartz or epidote	0.75	()	 Note: (i) Values of (q)_r are intended as an approximate guide to the mineralogical properties of the alteration products, if present
				В.	Unaltered joint walls, surface staining only	1.0	(250-350)	
				с.	Slightly altered joint walls. Non- softening mineral coatings, sandy particles, clay-free disintegrated rock etc.	2.0	(25°—30°)	
2.	JOINT SET NUMBER	$\langle J_n \rangle$		D.	Silty-, or sandy-clay coatings, small	3.0	(20°25°)	
A. B. C. D. E. F. G.	Massive, no or few joints One joint set Two joint sets plus random Two joint sets plus random Three joint sets Three joint sets plus random	0.5—1.0 2 3 4 6 9 12	Note:	E.	Softening or low friction clay mineral coatings, i. e. kaolinite, mica. Also chlorite, talc, gypsum and graphite etc., and small quantities of swelling clays. (Discontinuous coatings, 1—2 mm or less in thickness)	4.0	⟨8º—16º⟩	
H.	Four or more joint sets, random, heavily jointed, "sugar cube", etc.	15	(i) For intersections use (3.0 × In)		(b) Rock wall contact before 10 cms shear			
J.	Crushed rock, earthlike	20	(ii) For portals use $(2.0 \times L)$	F.	Sandy particles, clay-free dis- integrated rock etc.	4.0	(250	
3.	JOINT ROUGHNESS NUMBER	(J_r)	(2.0 ×)n/	G.	Strongly over-consolidated, non- softening clay mineral fillings (Continuous, <5 mm in thickness)	6.0	(16°24°)	
4	(a) Rock wall contact and (b) Rock wall contact before 10 cms shear	4	Noto	H.	Medium or low over-consolida- tion, softening, clay mineral fillings. (Continuous, <5 mm in thickness)	8.0	(12°—16°)	
A. B. C. D. E.	Rough or irregular, undulating Slickensided, undulating Rough or irregular, planar	3 2 1.5 1.5	 (i) Add 1.0 if the mean spacing of the relevant joint set is greater than 3 m (ii) J_r=0.5 can be used for planar slickensided joints 	J.	Swelling clay fillings, i. e. mont- morillonite (Continuous, < 5 mm in thickness). Value of J_{a} depends on percent of swelling clay-size particles, and access to water etc.	8.012.0	(60-120)	
G.	Slickensided, planar	0.5			(c) No rock wall contact when sheared			
	(c) No rock wall contact when sheared		the lineations are favourably orientated	К, L, М.	Zones or bands of disintegrated or crushed rock and clay (see G, H, J for description of clay con-	6.0, 8.0 or 8.012.0	(60-240)	
н. J.	Zone containing day minerals thick enough to prevent rock wall contact Sandy, gravelly or crushed zone thick enough to prevent rock wall contact	1.0 (nominal)		N.	Zones or bands of silty- or sandy clay, small clay fraction (non-softening)	5.0		
		1.0 (nominal)		0, P, R.	Thick, continuous zones or bands of clay (see G, H, J for descrip- tion of clay condition)	10.0, 13.0 or 13.0—20.0	(6°24°)	

A van Schalkwyk • JM Jordaan • N Dooge

Verslag aan die Waternavorsingskommissie deur die Departement Geologie Universiteit van Pretoria

WNK Verslag No 302/1/95

<u>link</u>

Mokolo Dam

Mokolo Dam

Flood of 12 March 2014 ~ 2m above 200m wide crest ~920 m³/s

Kammannasie

Erosion Assessment

Max Depth m	General extent m ³ per 100 m ²	Class	Descriptor
< 0.3	< 10	Ι	Negligible
0.3 to 1	10 to 30	II	Minor
1 to 2	30 to 100	III	Moderate
2 to 7	100 to 350	IV	Large
>7	>350	V	Extensive

Interpreted extent of erosion Interpretation of erosion mechanism

Assessed same 'erosion points' as van Schalkwyk

Interpreted erosion

Table D.8 Examination areas, South African dams

Dam	Exam.	Chart		Location of Examination Area		n period	Erosion
No.	area	ID	Ch. ^{1.}	Description	Start ^{2.}	End	class
1	EA1	App1	25	near-level area upstream of bridge	С	2014	Negligible
	EA2	App2	60	cascade just downstream of bridge	С	2014	Minor
2	EA0	Flo1	40	stilling pool	С	2014	Moderate ^{3.}
	EA1	Flo2	40	stilling pool	С	2014	Moderate ^{3.}
3	EA1	Gar1	70	level area below gauge	С	Oct-85	Negligible
	EA2	Gar2	85	cascade (45 ⁰), remaining material	С	Oct-85	Minor
	EA3	Gar3	85	cascade (45^{0}) , eroded material	С	Oct-85	Moderate ^{4.}
	EA1	Gar4	70	level area below gauge	Oct-85	Nov-07	Negligible
	EA2	Gar5	85	cascade (45^{0}) , remaining material	Oct-85	Nov-07	Minor
4	EA1	Goe1	40	right side slot	С	2014	Minor
	EA2	Goe2	40	island	С	2014	Moderate
	EA3	Goe3	60	base of central slot around island	С	2014	Negligible
	EA4	Goe4	40	left side slot	С	2014	Moderate
	EA5	Goe5	125	original creek bed	С	2014	Moderate
5	EA1	Haa1	45	low flow channel (LHS)	С	1996	Large
	EA2	Haa2	90	high flow channel (RHS)	С	1996	Moderate
	EA1	Haa3	45	low flow channel (LHS)	2010	2014	Large
	EA2	Haa4	90	high flow channel (RHS)	2010	2014	Large
6	EA1	Har1	250	left slot, remaining material	1947	2014	Negligible
	FA2	Har?	250	laft slot arodad matarial	C	1947	Moderate

Geological Assessment

Structural regions Geological mapping Rock-mass indices

Interpreted rock mass indices

Chart	RQD		Q-	rating		Kirsten index			Х
ID	%	Jn	$J_r^{1.}$	$J_{a}^{1.}$	<i>Q</i> ′	Jn	J_s	M_S	K
App1	50	9	1.5	3 (4K)	2.78	2.73	0.6	50	206
App2	50	9	1.5	3 (4K)	2.78	2.73	0.6	50	206
Flo1	60	9	2.5	1	16.7	2.73	0.5	200	5495
Flo2	5	12	2	1.5	0.56	3.34	0.5	100	100
Gar1&4	30	3	1	2 (1K)	5.00	1.5	0.44	12	106
Gar2&5	30	3	1	2 (1K)	5.00	1.5	0.44	12	106
Gar3	10	3	1	4	0.83	1.5	0.44	4	2.9
Goel	70	12	2	2	5.83	3.34	1	140	2934
Goe2	15	12	1	6	0.21	3.34	1	35	26
Goe3	70	12	2	2	5.83	3.34	1	140	2934
Goe4	15	12	1	6	0.21	3.34	1	35	26
Goe5	15	12	1	6	0.21	3.34	1	35	26
Haa1&3	20	12	1	3	0.56	3.39	0.48	12	11
Haa2&4	20	12	1	3	0.56	3.39	0.48	12	11
Har1	70	12	2.5	2	7.29	3.34	0.8	180	3772
Har?	40	12	1	Λ	0.83	3 3/	0.8	15	36

Table D.9 Interpreted rock mass indices - Q-system and Kirsten index, South African dams

Interpreted rock mass indices

Chart	RMR ₇₆ parameters				G	SI	Erosion GSI	
ID	Strength	RQD	Discont.	Discont.	GSI _{RMR}	GSI _{Chart}	E_{doa}	eGSI
	rating	rating	spacing	cond.				
App1	6	8	20	12	56	50	-5	45
App2	6	8	20	12	56	50	-8	43
Flo1	15	13	20	20	78	68	-25	43
Flo2	12	1	5	20	48	38	-25	13
Gar1&4	2	3	10	10	35	30	-5	25
Gar2&5	2	3	10	10	35	30	-8	23
Gar3	1	3	10	0	24	20	-18	3
Goe1	12	14	25	20	81	76	-8	69
Goe2	4	3	15	2	34	38	-8	31
Goe3	12	14	25	20	81	76	-8	69
Goe4	4	3	15	2	34	38	-8	31
Goe5	4	3	15	2	34	38	-8	31
Haa1&3	2	3	5	10	30	20	-15	5
H2228.4	2	3	5	10	30	20	-15	5

Table D.10 Interpreted rock mass indices - GSI, South African dams

Interpreted hydraulic indices

			Analytical estimates					HEC-RA	S Estim	ates	
Chart	Hydraulic	Peak	Peak	So	Peak	Peak	S_f	Peak	Peak	Peak	E_U
ID	area	Q	q	tanφ	Π_{UD}	q	-	ū	$\bar{\tau}_b$	Π_{UD}	
		$m^{3}.s^{-1}$	$m^2.s^{-1}$	-	kW.m ²	$m^{2}.s^{-1}$	-	m.s ¹	kPa	kW.m ²	MJ.m ²
App1	HA1	250	-	-	-	15.0	0.018	7.1	0.3	2.6	-
App2	HA2	250	-	-	-	10.9	0.142	8.5	1.72	15	-
Flo1	HA1	2200	-	-	-	41	0.298	22.5	4	120	3.30×10^{5}
Flo2	HA1	2200	-	-	-	41	0.298	22.5	4	120	3.30×10^{5}
Garl	HA1	44	-	-	-	1.9	0.054	5.2	0.17	1	3.50×10^{3}
Gar2	HA2	44	-	-	-	2.1	0.680	12.6	1.1	14	1.60×10^{4}
Gar3	HA3	44	-	-	-	2	0.459	10.0	0.7	9	1.50×10^{4}
Gar4	HA1	127	-	-	-	4.3	0.031	6.8	0.18	1.3	5.50×10^{4}
Gar5	HA2	127	-	-	-	5.1	0.390	15.1	1.3	20	2.40×10^{5}
Goel	HA1	750	-	-	-	9.3	0.986	15.6	7.5	90	1.45×10^{6}
Goe2	HA1	750	-	-	-	5	1.835	15.6	7.5	90	1.45×10^{6}
Goe3	HA2	750	-	-	-	21.9	0.233	12.5	3.6	50	1.10×10^{6}
Goe4	HA1	750	-	-	-	9.3	0.986	15.6	7.5	90	1.45×10^{6}
Goe5	HA3	750	-	-	-	15	0.152	12.3	1.68	22	5.00×10^{5}
Haal	HA1LF	55	-	-	-	7.9	0.046	7.1	0.46	3.6	9.00×10^{3}
Haa2	HA1HF	55	-	-	-	1 44	0.020	2.6	0.11	0.3	1.00×10^{3}

Table D.12 Hydraulic indices - South African dams

Summary of interpreted indices

Over 30 dams Australia (19) South Africa (11) USA (2)

~120 datapoints of erosion in fractured rock environments (vs. ~20 in previous publications)

Country	Dam	Inspection		Report	ing	Exam.
-	Name	Date	Personnel ^{1.}	Hydraulics	Geology ^{2.}	areas
Australia	Anthony	18-Apr-13	SEP; RF	Appendix B.1	Ref. 1	4
	Brogo	4-Dec-14	RF	Appendix B.2	Ref. 1	7
	Burdekin Falls	2-Dec-08	RF	Appendix B.3	Ref. 1	4
	Catagunya	17-Apr-13	SEP; RF	Appendix B.4	Ref. 1	3
	Copeton	15-May-13	SEP; KD	Appendix B.5	Ref. 1	13
	Dartmouth	16-Dec-13	SEP; KD; RF	Appendix B.6	Ref. 1	7
	Harding	26-Sep-13	SEP; KD	Appendix B.7	Ref. 1	4
	Junction Reefs	15-Jan-14	SEP; PJNP	-	-	-
	Kununurra	24-Sep-13	SEP; KD	Appendix B.8	Ref. 1	2
	Mackenzie	18-Apr-13	SEP; RF	Appendix B.9	-	-
	Mackintosh	19-Apr-13	SEP; RF	Basic only	Ref. 1	3
	Moochalabra	23-Sep-13	SEP; KD	Appendix B.10	Ref. 1	6
	Murchison	19-Apr-13	SEP; RF	-	-	-
	Ord River	24-Sep-13	SEP; KD	-	-	-
	Pindari	15-May-13	SEP; KD	Appendix B.11	Ref. 1	4
	Rowallan	17-Apr-13	SEP; RF	Basic only	Ref. 1	2
	Split Rock	16-May-13	SEP; KD	Appendix B.12	Ref. 1	3
	Wayatina	17-Apr-13	SEP; RF	Appendix B.13	Ref. 1	4
	Wyangala	11-Jun-13	SEP	-	-	-
South Africa	Applethwaite	17-May-14	SEP; PJNP	Appendix B.14	Ref. 2	2
	Floriskraal	14-May-14	SEP; PJNP	Appendix B.15	Ref. 2	2
	Garden Route	12-May-14	SEP; PJNP	Appendix B.16	Ref. 2	5
	Goedertrouw	9-May-14	SEP; PJNP	Appendix B.17	Ref. 2	5
	Haarlem	11-May-14	SEP; PJNP	Appendix B.18	Ref. 2	4
	Hartbeespoort	4-May-14	SEP; PJNP	Appendix B.19	Ref. 2	3
	Kammanassie	12-May-14	SEP; PJNP	Appendix B.20	Ref. 2	5
	Klipfontein	8-May-14	SEP; PJNP	Appendix B.21	Ref. 2	5
	Koos	13-May-14	SEP; PJNP	-	Ref. 2	
	Raubenheimer		, , , , , , , , , , , , , , , , , , , ,			
	Mokolo	5-May-14	SEP; PJNP	Appendix B.22	Ref. 2	10
	Osplaas	14-May-14	SEP; PJNP	Appendix B.23	Ref. 2	5
USA	Saylorville	-	-	Basic only	Ref. 3	3
	Tuttle Creek	-	-	Appendix B.24	Ref. 3	3

Kirsten Index

Q-system

GSI

GSI chart

GEOLOGICAL STRENGTH INDEX FOR JOINTED ROCKS (Hoek and Marinos, 2000)

From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavourable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced is water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis.

STRUCTURE

INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities BLOCKY - well interlocked undisturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets

VERY BLOCKY- interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets

BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity

DISINTEGRATED - poorly interlocked, heavily broken rock mass with mixture of angular and rounded rock pieces

LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes

GSI chart

A new index: 'eGSI'

eGSI – adjustment of GSI to vulnerability of erosion from unfavourable orientation of defects

$$eGSI = \max \begin{cases} GSI + E_{doa} \\ 0 \end{cases}$$

where: *eGSI* is an index of erodibility

 E_{doa} is a discontinuity orientation adjustment for erodibility

Defect orientation

The 'eGSI' method ...

- Simpler
- Larger data set for rock
- Can trace case studies
- Gradation, not a 'threshold'
- GSI is current and credible
- No RQD
- No Mass Strength
- Appropriate inference of accuracy
- Reliable even when used by non-geologists

Rock Mass Erodibility Index "RMEI"

Table 3.3 Estimation of Rock Mass Erosion Index (RMEI)

Erosion		Likelihood Factor (LF)							
vulnerability	RF ¹	Very Unlikely	Unlikely	Likely	Highly Likely	Almost Certain			
parameter		1	2	3	4	5			
P1: Kinematically viable mechanism for detachment ²	3	Rock with three defects, basal defect sub-parallel to spillway floor, and no day lighting basal release surface, or; Massive rock with effectively only two defect sets and no basal release surface.	Rock with three or more defects, with: basal defect sub-parallel to spillway floor, Joint 2 protruding from surface, or; basal defect inclined upstream or downstream at > 30 degrees relative to spillway floor.	Rock with three or more defects, with: persistent basal defect dip 10 to 30 degrees upstream relative to the spillway floor, or; Persistent basal defect dip 10 to 30 degrees downstream relative to the spillway floor.	Rock with three or more defects, with: persistent basal defect dip ≤ 10 degrees upstream relative to the spillway floor, or; persistent basal defect dip ≤ 10 degrees downstream relative to the spillway floor.	Persistent basal defect sub-parallel to the spillway floor, day lighting upstream or downstream, or; persistent shear and / or closely jointed rock which erodes readily forming a release surface into the shear.			
P2: Nature of the potentially eroding surface	3	Smooth water or glacier worn, with no protrusions of joint 2, no opening of defects	Bedding surface with protrusions of joint 2 < 1mm, and little or no opening of defects	Relatively small protrusions and defect openings (eg pre-split, or ripped and bulldozed)	Irregular surface following defects, little opening of defects (eg. blasted rock).	Irregular surface following defects, extensive defect opening (eg. heavily blasted rock)			
P3: Nature of the defects ^{3.}	2	Very rough surfaces, eg JRC ≥ 12 No separation UCS > 50MPa	Rough surfaces, e.g. JRC 8-10 Apperture < 1mm UCS 20MPa to 50 MPa	Slightly rough surfaces e.g. JRC 4-8 Apperture 1-2mm UCS 5MPa to 20MPa	Smooth surfaces e.g. JRC < 4 Apperture 2 to 5mm UCS 1MPa to 5MPa	Smooth or slickensided surfaces Apperture > 5mm UCS < 1MPa, or Soft gouge > 5mm thick			
P4: Spacing of basal defect ^{4.}	1	>3m	1m to 3m	0.3m to 1m	0.1m to 0.3m	<0.1m			
P5: Block shape ^{5.}	1	≤0.5	0.5 to 1	1 to 2	2 to 5	>5			
Notes:	1. 'R	elative importance factor'							

2. Defects include joints, bedding surfaces, shears, and foliation partings.

3. Select class which best fits the data taking into account the kinematically viable mechanism and

which defects control the displacement of the block of rock from the spillway.

Use Table 3.4 to assist in making this assessment but use judgement to make the assessment.

4. Joint 1 is basal defect of a block or region (bedding or joint).

5. Block shape = Joint 2 spacing / Joint 1 spacing;

Joint 2 is sub-vertical defect normal to the flow in the spillway.

Summary of rock mass index approaches

- 1. All rock mass indices are approximate representations of rock masses
- 2. Stream power dissipation is only an approximation of hydraulic loading
- 3. The method does not represent the mechanics of the problem
- 4. It is useful for 'first-pass' comparison to other case studies

Beyond rock mass indices ...

Flume

`The block'

Instruments

Instruments

Instruments

Pressure Transducer	Action Length (mm)	Width (mm)	Action Area (mm ²)	Lever Arm (mm)
PT1	60	200	12000	-70
PT2	80	200	16000	0
PT3	60	200	12000	70
PT4	60	200	12000	-70
PT5	80	200	16000	0
PT6	60	200	12000	70
PT7	60	200	12000	-70
PT8	80	200	16000	0
PT9	60	200	12000	70
PT10	100	200	19018*	-52*
PT11	100	200	19018*	52*

* These values include consideration of the area of the pole

Instruments

Base Tests

Base Tests

Base Tests, with varying protrusion

Varied

Varied roughness

Tests with Hydraulic Jumps

Plunging (ski-jump)

Top = u Mid = 0.97u Bot = 0.93u

Headcutting and Scour Holes

Tests with Aeration

Tests with Aeration

Tests with Aeration

Tests with Aeration

Analysis Statics

Analysis Dynamics

Base Tests -5deg_0deg_5deg_-20mm_30mm_350lps_25000Hz

Q-Q plot vs standard normal,5deg_0deg_5deg_-20mm_30mm_350lps_25000Hz

What to do with it?

- Drag force equations
 - Traditional "C_D" values
 - A new drag equation
- Bed shear stress
- Slope stability
- Rip rap design equations
- Rock masses

Rock-mass stability

Closed analytical solution not appropriate

- Complex and unhelpful
- Rock masses cant be generalised

"Don't try to re-invent rock mechanics" "give us pressures ... we will roll our own vectors"

Dimensionless coefficients Mean Pressure

Pressure (Pa) recorded in laboratory by transducer

(ie total pressure at that point)

 $\frac{\overline{P}/(\rho g) - H_P}{\bar{u}^2/2g}$

Pressure head, assuming a hydrostatic profile

Inferred velocity head at transducer

Mean velocity head of the flow

$$\bar{P} = \bar{C}_P \rho \frac{\bar{u}^2}{2} + H_p \rho g$$

Re-arrange to give design equation

Design coefficients

Table 6.3 Design pressure coefficients

Hydraulic Action	Design Equation	Design coefficient	Basis	Examples
P̄ (kPa)	$=\bar{C}_P\rho\frac{\bar{u}^2}{2}+H_P\rho g$	$\bar{C}_p=0.8$ to 1 for surfaces protruding perpendicular to bed-parallel flow or jet impingment.	Figure 6.35 (PT3); Figure 6.37 (PT1, PT2, PT3 for scour hole cases)	Çp = 0.8 to 1
		$\bar{C}_p=0.2$ for surfaces 25^o to flow direction or jet impingement.	Figure 6.38 (PT4, PT5, PT6 for r/d=0)	Čp ≈ 0.2
		$\bar{C}_p=0$ to 0.1 for surfaces parallel (stream-lined) to flow, no detachment.	Figure 6.36 (PT4, PT5, PT6 for r/d=0)	$H_P \qquad \qquad$
		$\bar{C}_p=-\frac{H_P}{H_a}~({\rm ie}~\bar{P}=0)$ where flow fully detached from surface.	Section 6.3.2	$C_P = -\frac{H_P}{H_{ad}}$ (i.e. $P = 0$)
		$\bar{C}_p = -2 \frac{H_p}{H_a}$ where flow detachment imminent.	Section 6.3.2; Figure 6.36 (PT4); Figure 6.40 (PT4)	$\begin{array}{c} \hline \hline \\ $
		Daylighting, single-ended defects adopt the surface \tilde{C}_p value.	not tested	$\hat{C}_p = X$ $\hat{C}_p = X$ $\hat{C}_p = 1$ $\hat{C}_p = 1$
		Daylighting, thoughflowing, defects with dip parallel to impinging flow adopt the surface \bar{C}_p value.	Figure 6.38 (PT10, PT11 for scour hole cases)	$H_{P} = X$
		Daylighting, thoughflowing, defects with dip perpendicular to impinging flow adopt 0.4 × surface \ddot{C}_p value.	Figure 6.35 (PT1, PT2 for 0 <r -<br="" d<1.5;="" for="" pt8,="" pt9="">1<r d<0)<="" td=""><td>$\nabla C_{p} = X$ H_{p} $C_{p} = 0.4X$ $\nabla C_{p} = 0.4X$</td></r></r>	$\nabla C_{p} = X$ H_{p} $C_{p} = 0.4X$ $\nabla C_{p} = 0.4X$
		Buried (ie - non-daylighting) defects adopt 0.75 × average of connected defect \bar{C}_p values.	Figure 6.37 (PT7, PT8, PT9 for scour hole cases), Fig- ure 6.26 ($F_{z'}$ increase as two joints exposed due to rotation), Figure 6.36 (PT10 and PT11)	$C_{P\sigma1} \left\{ \begin{array}{c} C_{P\sigma2} \\ C_{P\sigma3} = 0.75 \times \operatorname{average}(C_{P\sigma1}, C_{P\sigma2}) \end{array} \right\}$
₽́ (kPa)	$=\alpha \frac{\tau_b}{2} + H_P \rho g$	for surfaces protruding perpendicular to bed-parallel flow (preferable for small pro- trusions).	α from Equation A.1.69. See Section 6.4.5	$P = \alpha \frac{r_{2}}{2} + H_{p}\rho g$
σ _P (kPa)	$= C_{P,\sigma} \rho \frac{\bar{u}^2}{2}$	$C_{P\sigma} = 0.2$ for surfaces protruding per- pendicular to bed-parallel flow or jet impingment. ^{#1.}	Figure 6.41 (PT3); Fig- ure 6.43 (PT1, PT2, PT3)	<i>C_{Pσ}</i> = 0.2 <i>C_{Pσ}</i> = 0.2
		$C_{B\sigma}=0.1$ for surfaces 25^o to flow direction or jet impingement.	Figure 6.44 (PT4, PT5, PT6)	$C_{B\sigma} = 0.1$
		$C_{P,\sigma} = 0.02$ for surfaces parallel (stream- lined) to flow, no detachment. ^{#1.}	Figure 6.42 (PT4, PT5, PT6 for r/d=0)	$C_{P\sigma} = 0.02$

Analytical block removal

Consider the case of lifting of the block. For the purpose of illustration, assume:

F_L = hydraulic uplift force, fluctuating as per histogram shown

 $F_D = drag \text{ force} = 30 \text{ N}$

$$F_{sh}$$
 = rock shear force, = F_{D} tan ϕ = 17 N

W = mass of block = 10kg (98 N)

For movement, require: $F_L > F_{sh} + Wcos\theta$ $F_L > 115 N$

Lift	ft Force		Net applied	Restraining force		Fnot	Displacement				
Force	P(F)	Duration	force	<i>F</i> _D tanφ		- net	Case 1	Case 2			
			$F_L - W$	available	applied		up/down	up only			
(N)		(secs)	(N)	(N)	(N)	(N)	(mm)	(mm)			
75	0.002	$= 0.002 \times 60 = 0.12$	-23.1	17.3	-17.3	-5.8	-4.2	0.0			
80	0.005	$= 0.005 \times 60 = 0.3$	-18.1	17.3	-17.3	-0.8	-3.5	0.0			
85	0.01	$= 0.01 \times 60 = 0.6$	-13.1	17.3	-13.1	0.0	0.0	0.0			
90	0.05	$= 0.05 \times 60 = 3$	-8.1	17.3	-8.1	0.0	0.0	0.0			
95	0.1	$= 0.1 \times 60 = 6$	-3.1	17.3	-3.1	0.0	0.0	0.0			
100	0.26	$= 0.26 \times 60 = 15.6$	1.9	17.3	1.9	0.0	0.0	0.0			
105	0.29	$= 0.29 \times 60 = 17.4$	6.9	17.3	6.9	0.0	0.0	0.0			
110	0.2	$= 0.2 \times 60 = 12$	11.9	17.3	11.9	0.0	0.0	0.0			
115	0.07	$= 0.07 \times 60 = 4.2$	16.9	17.3	16.9	0.0	0.0	0.0			
120	0.007	$= 0.007 \times 60 = 0.42$	21.9	17.3	17.3	4.6	40.4	40.4			
125	0.004	$= 0.004 \times 60 = 0.24$	26.9	17.3	17.3	9.6	27.6	27.6			
130	0.002	$= 0.002 \times 60 = 0.12$	31.9	17.3	17.3	14.6	10.5	10.5			
Total	1	$= 1.0 \times 60 = 60$					70.8	78.5			
Displacement											
	s _{rock}	$= \frac{F_{\text{net}}}{\forall_s.\rho_s} \frac{t^2}{2}$	ne	Displacement after 60 seconds							

Δ

Fluctuating removal of a block

State of the art: Assessment of spillway erosion

1. Geometry and topology

1. Geometry and topology

2A. Hydraulics

2A. Hydraulics

2B. Engineering geology

2B. Engineering geology

2B. Engineering geology

3. Erosion domains

3. Erosion domains

3. Erosion domains

4A. Comparative scour assessment

The 'eGSI' method ...

- Simpler
- Larger data set for rock
- Can trace case studies
- Gradation, not a 'threshold'
- GSI is current and credible
- No RQD
- No Mass Strength
- Appropriate inference of accuracy
- Reliable even when used by non-geologists

4B. Kinematic scour assessment

4B. Kinematic scour assessment

4C. Numerical scour assessment

5 & 6. Risk and solutions

Box 2 2008

Box 1 2008

Box 4 2008

Contours (Dec 2016 minus Sept 2008)

2m accretion	— 0.5m erosion
— 1m accretion	— 1m erosion
— 0.5m accretion	2m erosion

Box 5 2008

Box 3 2008

Box 6 2008

Box 2 2016

Box 1 2016

Box 4 2016

Contours (Dec 2016 minus Sept 2008)

— 2m accretion	— 0.5m erosion
— 1m accretion	— 1m erosion
— 0.5m accretion	— 2m erosion

BOX 5 20

Box 5 2016

Box 3 2016

Box 6 2016

- 1. UAV surveys
- 2. Additional laboratory testing
- 3. Stream power dissipation
- 4. Coupled numerical modelling of erosion

Stream power dissipation:

Stream power dissipation: Drop structures

 ΔE

 $\Pi_{UD} = \rho g q$

Stream power dissipation: Plunging flows

 ΔE

 $\Pi_{UD} = \rho g q$

Stream power dissipation: Plunging flows

 ΔE

Stream power dissipation: Plunging flows

Stream power dissipation:

Plunging flows

Coupled numerical modelling

Rock Wedge Analysis

Questions?

Subjectivity in interpretation of Rock Mass Indices ...

A 'blind test'

Golder Associates – 1 person
University of NSW - 1
Douglas Partners - 2
AECOM - 1
URS - 1
Pells Consulting - 2
PSM 5

Peak pressure?

Armenio et al. (2000))

Probability of a certain pressure ...

P(p = x) =
$$\frac{1}{\sqrt{2\pi}\sigma_p} e^{-(x-\overline{P})^2/(2\sigma_p^2)}$$

(\overline{C}_p , $C_{p,\sigma}$)

Considering statistics allows to assess time of erosion

eu.

