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Dams Risk — Spillway Rock Erosion

« Backward erosion piping of dams and levees
« Global backward erosion piping in dams

* Prediction and numerical modelling of cracking
In embankment dams

* Prediction of potential erosion in unlined
spillways
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The ‘Dams Risk’ Project
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Dams Risk — Spillway Rock Erosion

* Prediction of potential erosion in unlined
spillways
— Field studies of dam spillways from dams around

Australia and South Africa (plus documented
USA) with significant erosion and/or flows.

— Laboratory flume studies focussing on potential
pressure variations that can be induced in rock
joints from parallel spillway flow.

— New empirical and analytical methods of
guantifying erosion created.

School of Civil and Environmental Engineering \%




Erosion Mechanisms
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Erosion Mechanisms

* Requires consideration of BOTH the:

— Geological Domains - primarily governed by the
structural geology.

— Hydraulics — primarily the spillway geometry and
roughness and the direction of flow with respect to
major defect orientations.

 Combined they are considered Erosion Domains

 Mechanisms are often very similar to slope
Instability mechanisms exacerbated by sub-
horizontal water pressures.
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Erosion Mechanisms — Copeton Dam
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Erosion Mechanisms — Copeton Dam
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Large blocks have slid along basal plane
under hydraulic loading
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Erosion
Mechanisms —
Anthony Dam
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Erosion Mechanisms - Brogo Dam

Jointed rock on smooth persistent
bedding susceptible to removal

Smooth, persistent bedding resisting erosion - no
exposed surfaces or open joints against which
stagnation pressures can form
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Erosion
Mechanisms —
Goedertrouw Dam
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Erosion Mechanisms — Klipfontein Dam
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Erosion Mechanlsms Applethwaite Dam
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Erosion Mechanisms —Dartmouth Dam
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Simple slope
stabllity
mechanisms

Plane Failure

Wedge Failure

Toppling Failure
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Erosion Mechanisms — Moochalabra Dam
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Erosion Mechanisms — Moochalabra Dam

blocks can slide over B multiple joint sets
persistent, planar basal § create small,
joint transportable blocks
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Erosion Mechanisms — Tuttle Ck Dam A
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Erosion Mechanisms —Dartmouth Dam

Bedding parallel to flow ~ S385
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Erosion Mechanisms — Pindari Dam
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Flow direction
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Erosion Mechanisms — Mokolo Dam
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into major erosion channel
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Erosion Mechanisms — Kununurra Diversion Dam

Phillite layers subject Upstream-bedding quartzite
4 toongoing erosion offering high resistance to erosion
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Erosion Mechanisms — Kununurra Diversion Dam
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™™ One joint set, planar bedding

Erosion
Mechanisms —
Garden Route Dam
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Erosion
Mechanisms —

Hartebeespoort Dam S8t
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sheets along bedding plane

Tight joints have resisted
penetration and lifting despite
unfavourable exposure and high
hvdraulic loading
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Erosion Mechanisms
Split Rock Dam

Persistent joins dipping
upstream resist erosion (except
where blast damaged)
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Erosion
Mechanisms —
Mackenzie Dam
(top)

Anthony Dam
(bottom)
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Closely jointed (foliated) structure.
Small blocks would be easily transported
but are difficult to remove due to

elongated shape
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Rowallan dam

Heavily jointed structure
. underneath glaciated surface

= asrevealed by excavation
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Rock Mass Indices

Bieniawski ‘RMR’ (1974)

RMR = Z[classiﬁcation parameters) + discontinuity orientation adjustment

Barton (1974) ‘Rock mass quality’ (‘Q-system’)

. RQD ]r ]r.u
Q‘( In )(Lﬁ)(sm)
Hoek (1995) ‘Geological Strength Index’ (‘GSI’)
GSI:RMR;6:F1+F2+F3+F4+1O

Kirsten (1982) ‘excavatabllity’ (‘Kirsten Index’)
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Rock Mass Indices
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Die Erodeerbaarheid van
Verskillende Rotsformasies Onder
Variérende Vloeitoestande
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Flood of 12 March 2014

~ 2m above 200m wide
crest

~920 m3/s
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Erosion Assessment

Interpreted extent
Max Depth  General extent Class Descriptor Of erOS|On

m  m per 100 n

e oem 1 eme INterpretation of

1to?2 30 to 100 [II Moderate

2to7 100 to 350 IV Large e rOS I O n
>7 >350 V  Extensive .
mechanism

Assessed same ‘erosion points’ as van Schalkwyk
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Interpreted erosion

Table D.8 Examination areas, South African dams

Dam Exam. Chart Location of Examination Area Erosion period  Erosion

No. area 1D Ch. ! Description Start > End class

1 EAl Appl 25 near-level area upstream of bridge C 2014 Negligible
EA2 App2 60 cascade just downstream of bridge C 2014 Minor

2 EAD Flol 40 stilling pool C 2014 Moderate *
EAl Flo2 40 stilling pool C 2014 Moderate *

3 EAl Garl 70 level area below gauge C Oct-85  Negligible
EA2 Gar2 85 cascade (457), remaining material C Oct-85 Minor
EA3 Gar3 85 cascade (457), eroded material C Oct-85 Moderate *
EAl Gar4 70 level area below gauge Oct-85 Nov-07 Negligible
EA2 Garb 85 cascade (457), remaining material Oct-85 Nov-07 Minor

4 EAl Goel 40 right side slot C 2014 Minor
EA2 Goe2 40 island C 2014 Moderate
EA3 Goe3 60 base of central slot around island C 2014 Negligible
EA4 Goe4 40 left side slot C 2014 Moderate
EA5 Goeb 125 original creek bed C 2014 Moderate

5 EAl Haal 45 low flow channel (LHS) C 1996 Large
EA2 Haa? 90 high flow channel (RHS) C 1996 Moderate
EAl Haa3 45 low flow channel (LHS) 2010 2014 Large
EA2 Haa4d 90 high flow channel (RHS) 2010 2014 Large

6 EAl Harl 250 left slot, remaining material 1947 2014 Negligible
EA2 Har? 95N laft clnt_arndad matarial r 1047 Madarato

PSM| ==
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Geological Assessment

Structural regions
Geological
mapping
Rock-mass indices
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Interpreted rock mass indices

Table D.9 Interpreted rock mass indices - Q-system and Kirsten index, South African dams

Chart RQD ()-rating Kirsten index

1D %o In IrY Jat Q' Jn Is Ms K
Appl 50 9 15 34K 278 273 0.6 50 206
App2 50 9 15 34K 278 273 06 50 206
Flol 60 9 25 1 16.7 273 0.5 200 5495
Flo2 5 12 2 1.5 0.56 3.34 0.5 100 100
Garl&4 30 3 1 2 (1K) 5.00 1.5 044 12 106
Gar2&5 30 3 1 2 (1K)  5.00 1.5 044 12 106
Gar3 10 3 1 4 0.83 1.5 044 4 2.9
Goel 7 12 2 2 2.83 3.34 1 140 2934
Goe2 15 12 1 6 0.21 3.34 1 35 26
Goe3 7 12 2 2 5.83 3.34 1 140 2934
Goe4 15 12 1 6 0.21 3.34 1 35 26
Goeb 15 12 1 6 0.21 3.34 1 35 26
Haal&3 20 12 1 3 0.56 3.39 048 12 11
Haa2&4 20 12 1 3 0.56 3.39 048 12 11
Harl 70 12 25 2 7.29 3.34 0.8 180 3772
Har? AN 12 1 A n 22 224 NA IR 2R

PSM
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Interpreted rock mass indices

Table D.10 Interpreted rock mass indices - GSI, South African dams

Chart RM R7g parameters GSI Erosion GSTI
1D Strength RQD  Discont. Discont. GSIpmr  GSIcnar: Ejoa €GSI
rating rating spacing cond.

Appl 6 8 20 12 56 50 -3 45
App2 6 8 20 12 56 50 -8 43
Flol 15 13 20 20 78 68 -25 43
Flo2 12 | 5 20 48 38 -25 13
Garl&4 2 3 10 10 35 30 -3 25
Gar2&5 2 3 10 10 35 30 -8 23
Gar3 1 3 10 0 24 20 -18 3
Goel 12 14 25 20 81 76 -8 69
Goe2 4 3 15 2 34 38 -8 31
Goe3 12 14 25 20 81 76 -8 69
Goe4d 4 3 15 2 34 38 -8 31
Goeb 4 3 15 2 34 38 -8 31
Haal&3 2 3 10 30 20 -15 5
ITaa28.4 2 2 S 1N 2n 20 = R
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Hydraulic Assessment
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Hydraulic Assessment

Typical section for unlined channel
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Hvdraulic Assessment
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Elevation m RL

7y (kPa) h,, hp (m)

n (s.m'?)

Hydraulic Assessment
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Interpreted hydraulic indices

Table D.12 Hydraulic indices - South African dams

Analytical estimates HEC-RAS Estimates

Chart Hydraulic Peak Peak Sy Peak Peak Sf Peak Peak Peak Ejj
1D area Q q tang Ilyp q 7] Th irp

m>s! mis ! - kW.m? més~! - m.s! kPa kWomZ  MJ].m?
Appl HAl 250 - - - 15.0 0.018 7.1 0.3 2.6 -
App2 HAZ 250 - - - 10.9 0.142 8.5 1.72 15 -
Flo1 HA1 2200 - - - 41 0.298 225 4 120 3.30x10°
Flo2 HA1 2200 - - - 41 0.298 225 4 120 3.30x10°
Garl HAIl J4 - - - 1.9 0.054 5.2 0.17 1 3.50x10°
Gar2 HA2 44 - - - 2.1 0.680 126 1.1 14 1.60x10*
Gar3 HA3 44 - - - 2 0.459 10.0 0.7 9 1.50x 104
Gard HAIl 127 - - - 4.3 0.031 6.8 0.18 1.3 5.50x10*
Garb HA2 127 - - - 5.1 0.390 15,1 1.3 20 2.40x10°
Goel HAI 750 - - - 9.3 0.986 15.6 7.5 90 1.45x10°
GoeZ HA1 750 - - - 5 1.835 156 7.5 90 1.45x10°
Goe3 HA2 750 - - - 21.9 0.233 125 36 50 1.10x10°
Goed HAI 750 - - - 9.3 0.986 15.6 7.5 90 1.45x10°
Goeb HA3 750 - - - 15 0.152 12.3 1.68 22 5.00x10°
Haal HAILF 55 - - - 7.9 0.046 7.1 046 36 9.00x10°
Haa? HATHE RR - - - 1 44 norn 2R ni n2 1 00103
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Summary of interpreted indices

Over 30 dams

Australia (19)
South Africa (11)
USA (2)

~120 datapoints of
erosion in fractured
rock environments
(vs. ~20 In previous
publications)

Country Dam Inspection Reporting Exam.
Name Date Personnel*  Hydraulics Geology*> areas
Australia Anthony 18-Apr-13  SEP; RF AppendixB.1 ~ Ref. 1 4
Brogo 4-Dec-14  RF AppendixB.2  Ref. 1 7
Burdekin Falls  2-Dec-08 RF AppendixB.3  Ref. 1 4
Catagunya 17-Apr-13  SEP; RF AppendixB.4  Ref. 1 3
Copeton 15-May-13  SEP; KD AppendixB.5  Ref. 1 13
Dartmouth 16-Dec-13  SEP; KD; RF  AppendixB.6  Ref. 1 7
Harding 26-Sep-13  SEP; KD Appendix B.7  Ref 1 4
Junction Reefs ~ 15-Jan-14  SEP; PINP - - -
Kununurra 24-Sep-13  SEP; KD AppendixB.8  Ref. 1 2
Mackenzie 18-Apr-13  SEP; RF AppendixB9 - -
Mackintosh 19-Apr-13  SEP; RF Basic only Ref. 1 3
Moochalabra 23-Sep-13  SEP; KD Appendix B.10  Ref. 1 6
Murchison 19-Apr-13  SEP; RF - - -
Ord River 24-Sep-13  SEP; KD - - -
Pindari 15-May-13 SEP; KD Appendix B.11  Ref. 1 4
Rowallan 17-Apr-13  SEP; RF Basic only Ref. 1 2
Split Rock 16-May-13  SEP; KD Appendix B.12  Ref. 1 3
Wayatina 17-Apr-13  SEP; RF Appendix B.13  Ref. 1 4
Wyangala 11-Jun-13  SEP - - -
South Africa  Applethwaite ~ 17-May-14 SEP;PJNP  AppendixB.14 Ref. 2 2
Floriskraal 14-May-14  SEP; PJNP Appendix B.15 Ref. 2 2
Garden Route  12-May-14 SEP; PJNP Appendix B.16  Ref. 2 5
Goedertrouw 9-May-14  SEP; PJNP Appendix B.17  Ref. 2 5
Haarlem 11-May-14 SEP; PINP Appendix B.18  Ref. 2 4
Hartbeespoort 4-May-14  SEP; PJNP Appendix B.19 Ref. 2 3
Kammanassie  12-May-14 SEP; PINP  Appendix B.20  Ref. 2 5
Klipfontein 8-May-14  SEP; PINP  AppendixB.21  Ref. 2 5
Egﬁ;enheimer 13-May-14 SEP;PJNP - Ref. 2
Mokolo 5-May-14  SEP; PJNP Appendix B.22  Ref. 2 10
Osplaas 14-May-14 SEP; PJNP Appendix B.23  Ref. 2 5
USA Saylorville - Basic only Ref. 3 3
Tuttle Creek - - Appendix B.24 Ref. 3 3
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GSI chart
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GEOLOGICAL STRENGTH INDEX FOR

JOINTED ROCKS (Hoek and Marinos, 2000)

From the lithology, structure and surface
conditions of the discontinuities, estimate
the average value of GSI. Do not try to
be too precise. Quoting a range from 33
to 37 is more realistic than stating that
G5l = 35, Mote that the table does not
apply to structurally controlled failures.
Where weak planar structural planes are
present in an unfavourable orientation
with respect to the excavation face, these
will dominate the rock mass behaviour.
The shear strength of surfaces in rocks
that are prone to deterioration as a result
of changes in moisture content will be
reduced is water is present.  When
working with rocks in the fair to very poor
categories, a shift to the right may be
made for wet conditions. Water pressure
is dealt with by effective stress analysis.

STRUCTURE

SURFACE CONDITIONS

Very rough, fresh unweathered surfaces

VERY GOOD

DECREASING SU

GOOD

Rough, slightly weathered, iron stained surfaces

Smooth, moderately weathered and altered surfaces

FAIR

RFAC

m

Slickensided, highly weathered surfaces with compact

coatings or fillings or angular fragments

POOR
VERY POOR

QUALITY =

Slickensided, highly weathered surfaces with soft clay

coatings or fillings

INTACT OR. MASSIVE - intact
rock specimens or massive in
situ rock with few widely spaced
discontinuities

BLOCKY - well interlocked un-
disturbed rock mass consisfing
of cubical blocks formed by three
intersecting discontinuity sets

N\

™
w
=

(=]
(=]
Y

MN/A

N/A

/

VERY BLOCKY- interlocked,
partially disturbed mass with
multi-faceted angular blocks
formed by 4 or more joint sets

20

40

G0
GSIpme

80

100

N
SRNRN

e

BLOCKY/DISTURBED/SEAMY
- folded with angular blocks
formed by many intersecting
discontinuity sets. Persistence
of bedding planes or schistosity

&. §%7] DISINTEGRATED - poorly inter-

locked, heawily broken rock mass
with mixture: of angular and
rounded rock pieces

SRR

LAMINATED/SHEARED - Lack
of blockines s due to close spacing

of weak schistosity or shear planes

<Z—= DECREASING INTERLOCKING OF ROCK PIECES

MNiA

NiA
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A new index: ‘eGSI’

eGSl — adjustment of GSI to
vulnerabillity of erosion from
unfavourable orientation of defects

GSI+ Egoq

eGSI = max{
0

where: eGSI is an index of erodibility

E ;04 is a discontinuity orientation adjustment for erodibility

School of Civil and Environmental Engineering

ESM
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The ‘eGSI' method ...
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Rock Mass Erodibility Index "RMEI”

Table 3.2 Estimation of Rock Mass Erosion Index (RMEI)

Erosion Likelihood Factor | LF)
wvulnerability RFY Very Unlikely  Unlikely Likely Highly Likely  Almost Certain
parameter 1 2 3 4 5
Pl: 3 Rock with Rock with Rock with Rock with Persistent basal
Kinematically three defects, threeor more  three ormore  threeormore  defect
viahle basal defect defects, with: defects, with: defects, with: sub-paralle] to
mechanism sub-parallel to  basal defect persistent persistent the spillway
for spillway floor, sub-parallel to  basal defect hasal defect floor, day
detachment * and no day spillway floor,  dip 10to 30 dip = 10 lighiting
lighting basal  Joint 2 degrees degrees upstream or
release protruding upstream upstream downstream,
surface, or; From surface, relative to the  relative to the  on
or; spillway floor,  spillway floor,
or; ar;
Mlassive rock basal defect Persistent persistent persistent shear
with inclined basal defect hasal defect and [ or closely
effectively UPSLTEA 0T dip 10 to 30 dip =10 jointed rock
only two downstream degrees degrees which erodes
defect sets at= 30 degrees  downstream downstream readily forming
and no basal relative to relative to the  relative to the  a release
release spillway floor.  spillway floor.  spillway floor.  surface into the
surface. shear.
p2: 3 Smooth water  Bedding Relatively Irregular Irregular
Mature of or glacier surface with small surface surface
the worn, withno  protrusions of  protrusions following following
potentially protrusions of  joint 2 < lmm, and defect defects, little defects,
eroding joint 2, no and litthe orno openings (eg opening of extensive defect
surface opening of opening of pre-split, or defects (eg. opening (eg-
defects defects ripped and blasted rock).  heavily blasted
bulldozed) rock)
Pa: 2 Very rough Rough Hightly rough  Smooth Smooth or
Nature of surfaces, eg surfaces, g surfaces e.g surfaces e.g slickensided
the JRC = 12 JRCB-10 TRC 4-B TRC = 4 surfaces
defects > Mo separation  Apperture < Apperture Apperture 2 to  Apperture >
Imm 1-Z2mm Smm Smm
UCS=50MPa  UCS20MPato UCS5MPato  UCS IMPato  UCS < IMPa,or
S0 MPa 20MPa SMPa Soft gouge =
Smim thick
Pd: 1 =3m 1Im to 3m 0.3m to lm 0.1m to 03m <{.lm
Spacing of
basal
defect
Ph: 1 =05 0.5 to 1 1to2 2to5s =h
Block
shape*
MNotes: 1. *‘Relative Importance factor

2. Defects include jolnts, bedding surfaces, shears, and follation partings.

3. Select class which best fits the data taking into account the Hnematically vizble mechantsm and
whilch defects control the displacement of the block of rock from the spilbway.
s Table 3.4 to asstst In making this assessment bt use judgement to make the assessment.

4. Jaint 1 15 basal defect of a block or repion (bedding or jofnt).

5. Block shape = joint 2 spacing / Joint 1 spacing;
Joint 2 1s sub-vertical defect normal to the flow In the spillway.
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Summary of rock mass index
approaches

1. All rock mass indices are approximate
representations of rock masses

2. Stream power dissipation is only an
approximation of hydraulic loading

3. The method does not represent the
mechanics of the problem

4. It is useful for ‘first-pass’ comparison to
other case studies

School of Civil and Environmental Engineering




Beyond rock mass indices ...
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Endevco 126

Instruments

Endeveo 85300 Endevco 126 Bridge NIgz3g
Pressure Amplifiers AD Converters
Transducers NI cDAQ-9178 USE
\ Chassls
-, IR TR
PT1 | ) 1
Bridge Amplifiers = e b |
) H
- [
) [ - Diata Streamed to
Il H External HDD
PT12 T

NI cDAQ 9178 USB Chassis
with 9239 and 9237 Modules

Loadcell cable
breakout box
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Laptop running
NI Labview Software

NI 9237
Bridge Amplifier &
AD Converters

USB
Data ] AR
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Labview Software
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Instruments

200

FLOW
7
gﬂﬁ Vo Vors Vors
=PT3 PT7<]
o
=]
= Block
—~— [BPT2 T +Centroid PTa<
o
Q
—— E=PT1 | _i_LoadCE" ——
% PT1 1] % PT1 U[
30 30
100 | 100
I
200

Pressure Action Width Action Lever
Transducer Length(mm) (mm) Area(mm?) Arm(mm)

PT1 60 200 12000 —70
PT2 80 200 16000 0
PT3 60 200 12000 70
PT4 60 200 12000 -70
PT5 80 200 16000 0
PT6 60 200 12000 70
PT7 60 200 12000 =70
PT8 80 200 16000 0
PT9 60 200 12000 70
PT10 100 200 19018* -52*
PT11 100 200 19018* 52*

* These values include consideration of the area of the pole
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Instruments
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Base Tests
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Base Tests,
with varying
protrusion
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Varied roughness
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Orientation

Test V1 at 10 degrees slope Test V2 at 10 degrees slope

School of Civil and Environmental Engineering




Tests with Hydraulic Jumps
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Headcutting and Scour Holes
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Tests with
Aeration
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Tests with Aeration

“Al1” (via a
manifold
. placed under

Air source (leaf blower) , ‘ »- ,  3 the flume)
Rotameters for i

monitoring air discharge

PSM
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Tests with Aeration
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Analysis
Statics

Series 1, Sdeqg_Ddeqg_Sdeg -47mm_3mm_100lps _25000Hzxsect
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2E00 .
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Moment{PT): —-0.19 Nm
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What to do with 1t?

* Drag force equations
 Traditional “C," values
« A new drag equation

 Bed shear stress

« Slope stability

* Rip rap design eqguations
 Rock masses

School of Civil and Environmental Engineering
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Rock-mass stability

Closed analytical solution not appropriate
— Complex and unhelpful
— Rock masses cant be generalised

“Don't try to re-invent rock mechanics”

“give us pressures ... we will roll our own
vectors”

School of Civil and Environmental Engineering




Dimensionless coefficients
Mean Pressure

Pressure (Pa) recorded in laboratory by transducer
(ie total pressure at that point)

\ / Pressure head, assuming a hydrostatic profile

_ (ﬁ/ (pg) _ HP) <« Inferred velocity head at transducer
P —

?/2g

/

Mean velocity head of the flow

N T
P=Cpp—=+Hypg

Re-arrange to give design equation

ESM

School of Civil and Environmental Engineering




Dimensionless coefficients
Fluctuating Pressure

Standard deviation of pressure (Pa) recorded by transducer over 10
/ minute test

op/pg 20p
Cpo == -2
u-12g pu 5
)
/ = Cpo p—
Velocity head O-P P’Jp 2

Re-arrange to give design equation

PSM

School of Civil and Environmental Engineering
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Design
coefficients

Table 6.3 Design pressure coefficients

Hydraulic Design Design Basis Examples
Action Equation coefficient
P (kPa) = Cpp% +Hppg C'p = 0.8 to 1 for surfaces protruding per-  Figure 6.35 (PT3); Fig- _’Y‘———._____.
pendicular to bed-parallel flow or jet imp- ure 6.37 (PT1, PT2, PT3 for CP 08to1
ingment. scour hole cases) i . k.
C_'p = 0.2 for surfaces 25° to flow direction ~ Figure 6.38 ( PT4, PT5, PT6
or jet impingement. for r/d=0)
C‘p = 0t00.1 for surfaces parallel (stream-  Figure 6.36 (PT4, PT5, PT6 H, -
lined) to flow, no detachment. for r/d=0) o Cp=0to0.1
C_'p =— ? (ie P = 0) where flowfullyde- Section6.3.2 g
tached frum surface. Hp. Cp=— %:l
(le. P=0)
C'p = —2%5 where flow detachment im- Section 6.3.2; Figure 6.36
minent. (PT4); Figure 6.40 (PT4)
Daylighting, single-ended defects adopt not tested
the surface Cp value.
Daylighting, thoughflowing, defects with ~ Figure 6.38 (PT10, PT11 for
dip parallel to impinging flow adopt the scour hole cases)
surface Cp value.
Daylighting, thoughflowing, defects with  Figure 6.35 (PTL, PT2 for
dip perpendicular to impinging flow ad- 0<r/d<1.5; PT8, PT9 for -
opt 0.4 x surface Cp value. l<r/d<0}
Buried (ie - non-daylighting) defects ad-  Figure 6.37 (PT7, PT8, PT9
opt 0.75 = average of connected defect C‘p for scour hole cases), Fig-
values. ure 6.26 (Fy increase as
two joints exposed due to
rotation), Figure 6.36 (PT10 ——
and PT11) Cpga =0.75 » average(Cpgy1, Cpgz)
P (kPa) =alt+Hppg for surfaces protruding perpendicular to @ from Equation A.1.69. {i—-___—
bed-parallel flow (preferable for small pro- See Section 6.4.5 p gf + HPPE
trusions). E . k.
ap (kPa) = Cplgpg Cpg = 0.2 for surfaces protruding per- Figure 6.41 (PT3); Fig- ‘?_““*—-___-

pendicular to bed-paralle] flow or jet
impingment.“‘

Cpg = 0.1 for surfaces 25° to flow direc-

tion or jet impingement. #L.

Cpg = 0.02 for surfaces parallel (stream-

lined) to flow, no detachment.*!-

ure 6.43 (PT1, PT2, PT3)

Figure 6.44 (PT4, PT5, PT6)

Figure 6.42 (PT4, PT5, PT6
for r/d=0)

— Cﬂn =02

-_________U-l_-




- Practitioners need to perceive the
! I sliding
I '

problem and develop own force
- i, underminig vectors ...
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Analytical block removal

Consider the case of lifting of the block.
For the purpose of illustration, assume:

F,_ = hydraulic uplift force, fluctuating as
per histogram shown

Fp = drag force =30 N
F, = rock shear force, = Fptang = 17 N
W = mass of block = 10kg (98 N)

School of Civil and Environmental Engineering

Probability ‘P(F)’

=
w
|

=
]
1 | 1 1 1 |

0.1+

80 90

100

110

Uplift force (N)

For movement, require:
F.>F,, + Wcos6

F > 115 N
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Net

Lift Force applied  Restraining force  Fet Displacement
Force P(F)  Duration force Fptang Casel Case?2
Fr—W available applied up/down up only
(N) (secs) (N) (N) (N) (N) (mm) (mm)
75 0.002 =0.002 x 60=0.12 -23.1 17.3 -17.3 -5.8 -4.2 0.0
80 0.005 =0.005x60=03 -18.1 17.3 -17.3 -0.8 -3.5 0.0
85 0.01 =0.01 x60=0.6 -13.1 17.3 -13.1 0.0 0.0 0.0
90 0.05 =0.05x60=3 -8.1 17.3 -8.1 0.0 0.0 0.0
95 0.1 =0.1 x 60 =6 -3.1 17.3 -3.1 0.0 0.0 0.0
100 026 =0.26x60=15.6 1.9 17.3 1.9 0.0 0.0 0.0
105 029 =0.29x60=174 6.9 17.3 6.9 0.0 0.0 0.0
110 0.2 =0.2 x 60 =12 11.9 17.3 11.9 0.0 0.0 0.0
115 0.07 =0.07 x 60=4.2 16.9 17.3 16.9 0.0 0.0 0.0
120 0.007 =0.007 x 60=0.42 21.9 17.3 17.3 4.6 40.4 40.4
125 0.004 =0.004 x 60=0.24 26.9 17.3 17.3 9.6 27.6 27.6
130 0.002 =0.002x60=0.12 31.9 17.3 17.3 14.6 10.5 10.5
Total 1 =1.0 x 60 =60 70.8 78.5

Displacement
\ Fnet Ig/ Time Displacement after 60

Srock =

Vs.05 2

seconds






108

Black - 0.1m diameter rocks

Red - 0.2m diameter rocks

Green - 0.4m diameter rocks

Blue - 0.7m diameter rocks 10

Gold - 1.2m diameter rocks
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P=pg(1.3+0.0x29)
F=25kN

1

i=24ms"
1.3m

e
—
Fr=11kN

(%%/2g = 29m)
Cp=02
fp=5.5kPa &,-0.0
I — A =y
4 z Fp =~ 47kN g
s = > = Z
= g g 12m (= b . 0 =
[ T = = " Fp ~11kN 3 bl
4 St S 'y L o = u
- 1§ I o . W =~ 65kN - K
Cp=0.04
B
J r:3 2m -
S N
P=pg(2.5+0.04x29)

Im
F=T72kN

1m
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State of the art:
Assessment of spillway erosion
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State
of the
art

1. Geometry and topology

Ground and structure surveys
Historical and design floods
Geometry of historical erosion

2A. Hydraulics

Spillway rating
Tailwater levels
Flow / plunge trajectory

Velocity, stream power dissipation

Hydraulic regions

2B. Engineering geology

3D geological model
Depositional framework
Major structures

Defect mapping
Structural regions

3. Erosion Domains

Overlay of hydraulic and geological domains

4A. Comparative
scour assessment

4B. Analytical kinematic 4C. Numerical

scour assessment

scour assessment

Rock-mass index
methods (eGSI, RMEI)

Kinematics of selected

Coupled numerical

type sections or key blocks modelling

5. Qualitative risk evaluation |«—»| 6. Assessment and evaluation

of protection measures

7. Surveillance specification




1. Geometry and topology

1. Geometry and topology

Ground and structure surveys
Historical and design floods
Geometry of historical erosion




1. Geometry and topology
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2A. Hydraulics

2A. Hydraulics

Spillway rating

Tailwater levels

Flow / plunge trajectory

Velocity, stream power dissipation
Hydraulic regions




2A. Hydraulics
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2B. Engineering geology

2B. Engineering geology

3D geological model
Depositional framework
Major structures

Defect mapping
Structural regions




2B. Engineering geology
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ELEVATION (RL mAHD)

2B. Engineering geology
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3. Erosion domains

3. Erosion Domains

Overlay of hydraulic and geological domains




3. Erosion domains
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3. Erosion domains
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4A. Comparative scour assessment

4A. Comparative
scour assessment

Rock-mass index
methods (eGSI, RMEI)




The ‘eGSI' method ...

Legend

[ Negligible erosion
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4B. Kinematic scour assessment

4B. Analytical kinematic
scour assessment

Kinematics of selected
type sections or key blocks




4B. Kinematic scour assessment
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4C. Numerical scour assessment

4C. Numerical
scour assessment

Coupled numerical
modelling




5 & 6. Risk and solutions

5. Qualitative risk evaluation |<«—»| 6. Assessment and evaluation
of protection measures




7. Survelllance
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Metars
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Legend

[ waterbodies, Dec 2016 photo

g 2 to 5 m deposition

| 1102 m deposition

. : 0.5 to 1 m deposition
| ] 0.25t0 0.5 m deposition
: E 0.1 to 0.25 m depostion
+/- 0.1 m change (transparent)
C 0.1 to 0.25 m scour
,: 0.25 to 0.5 m scour
- 0.5 to 1 m scour
7 - 1to 2 m scour
- 21to 5 m scour
: Over 5m scour

200
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Box 4 2008

Contours (Dec 2016 minus Sept 2008)

——— 2m accretion 0.5m erosion
——— 1m accretion 1m erosion
0.5m accretion ——— 2m erosion
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7. Survelllance
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/. Survelllance

o

Box 4 2016 ' Box 5 2016

Contours (Dec 2016 minus Sept 2008)

——— 2m accretion 0.5m erosion
——— 1m accretion ~——— 1m erosion
0.5m accretion —— 2m erosion
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Further research
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Further research

1. UAV surveys

2. Additional laboratory testing

3. Stream power dissipation

4. Coupled numerical modelling of erosion
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Further research
Stream power dissipation:

Gravity (m/s?) Discharge (m?3/s)
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Further research
Stream power dissipation:

o AE
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Further research
Stream power dissipation:

Hydraulic jumps Iyp = pgq
o
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Further research
Stream power dissipation:

Drop structures Myp = pgq

PSM
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Further research

Stream power dissipation:
Plunging flows

Intermediate jet

Free overfall jet
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Further research

Stream power dissipation:
Plunging flows

Ilyp = pgq -
UD =

~11lm
w......otal energy line

34m

\ 120 m RL P, 1 No stage or velocity after impact?
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Further research

Stream power dissipation:
Plunging flows

Ilyp = pgq -
UD =

PSM
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Further research

Stream power dissipation:
Plunging flows
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Coupled numerical modelling
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~yersion 740 (B 740.2013.09.13)
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Rock Wedge Analysis

Unstable block of 1.6 m3in crown

Viaximum unstable block of 5.4 m3in cavern sidewall
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Questions?




Unit Stream Power Dissipation
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Subjectivity In interpretation of Rock
Mass Indices ...

A ‘blind test’

Golder Associates — 1 person
University of NSW - 1
Douglas Partners - 2
AECOM - 1
URS - 1
Pells Consulting - 2
PSM 3}

PSM
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RQD
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Peak pressure?

Cp
T Fr=9,5
1.5 — , | - ,
1 ®
2 ooogé;ﬁ
_ °....“".§84§§
3“:583593992??%?.:.1
Te a::oaaa&xz°bh g;,
o NTI ERE
< -"*"’."*"‘ ik

‘ooot83388¥3388331333
8——.' | ' [ I T T

time (hours)

Armenio et al. (2000))

s g

PSM

School of Civil and Environmental Engineering




Probability of a certain
pressure ...

eg:
P(p = x) = ——— eGP/

(Cp, Cp,a) ‘/

Considering statistics allows to assess time of erosion

School of Civil and Environmental Engineering

PSM




