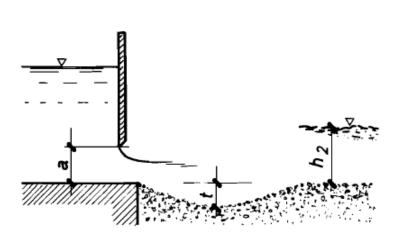
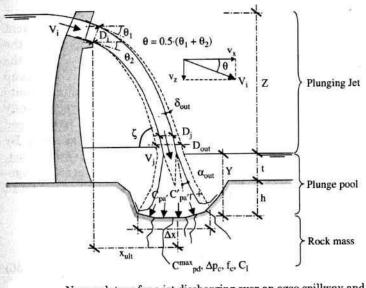
International Workshop on overflowing erosion of dams and dikes

- 1. Dissipation rates for stilling basin and plunge pool
- 2. Estimation of the erosion potential
- 3. Previous experiences with 3D models




General overview

Technical feedback and ususal practices of Artelia

Downstream of concrete dam – Dissipation of energy

- Comparison between the hydraulic power of the water jet and the resistance of the rock
 - Rock sufficiently resistant?
 - Do we need a concrete basin?
 - Do we need a plunge pool with water mattress?

Nomenclature for a jet discharging over an ogee spillway and plunging into a pool (Bollaert 2002).

General overview

Dissipation structures

For low and middle head structures (Maximal head: ~ 40 m)

- If the rock is erodible
- And the jet can not be deflected far from the dam

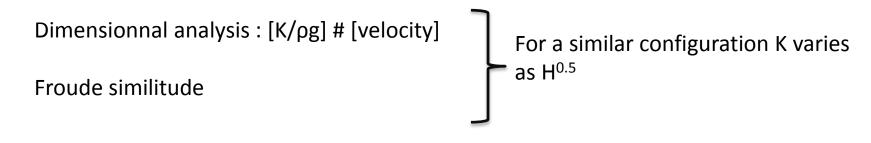
Classical solution : Stilling basin

Standard design For head > 30 m risk of cavitation

• Sufficient head to deflect the jet far from the dam

Classical solution : plunge pool

Preexcavated into the existing rock or in concrete The tailwater level can be controlled and raised by an auxiliary small dam

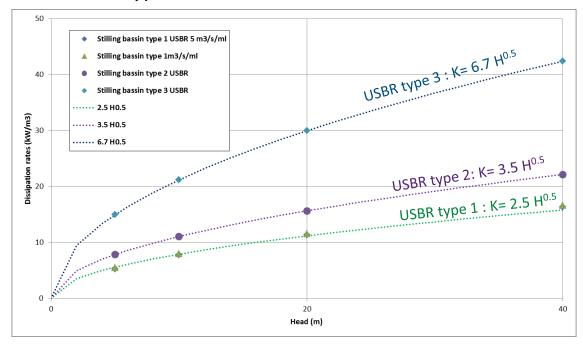

Definition

Dissipation rate = $K = \frac{Power of the jet}{Volume of dissipation}$

Dissipation rate = $K = \frac{\rho g Q H}{Volume of dissipation}$

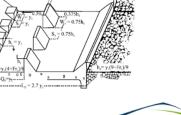
with :

- Q : discharge (m3/s),
- H : head (m)
- g: 9.81 m/s²

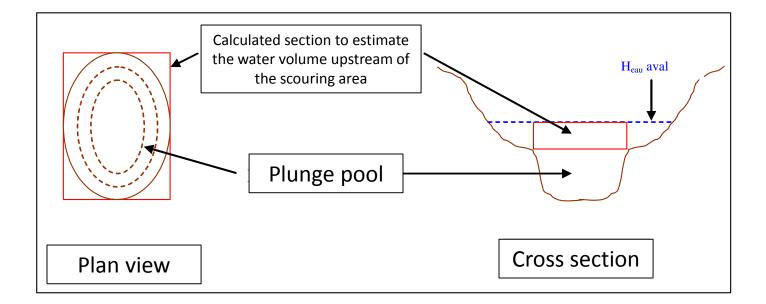


Dissipation rates for stilling basin

For the stilling basin :


- USBR Type 1 : K=2.5 H^{0.5}
- USBR Type 2 : K=3.5 H^{0.5}
- USBR Type 3 : K=6.7 H^{0.5}

USBR Type 1 USBR Type 1 USBR Type 1 USBR Type 2 USBR Type 2

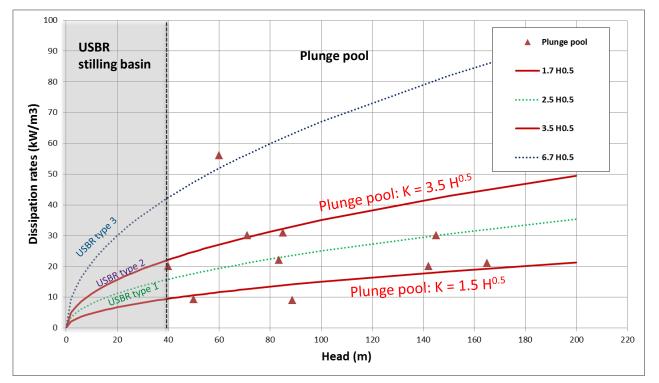

(A) TYPE I BASIN DIMENSIONS

USBR Type 3

Estimation of the volume of dissipation for a plunge pool

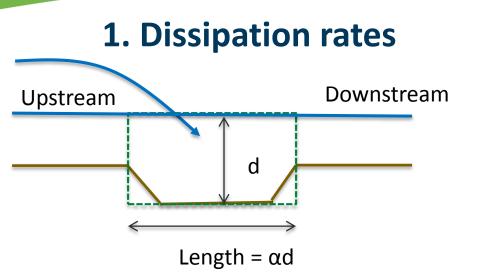
1. Dissipation rates

The dissipation rates within the plunge pool of 9 spillways (in operation or in the scale model) were estimated (*) :


Dam	Q (m3/s)	Head (m)	K = (P/V) (KW/m3)
P.K. Leroux (South			
Africa)	13 000	71	30
Cambambe (Angola)	9 500	60	56
Maguga (Swaziland)	7 000	85	31
Ertan (China)	23 900	165	21
Xingo (Brazil)	16 000	83.5	22
Sidi Saad (Tunisia)	5 400	50	9.3
Katse (Lesotho)	6 040	142	20
Bunji (Pakistan)	21 400	145	30
B72 (Oman)	588	40	22

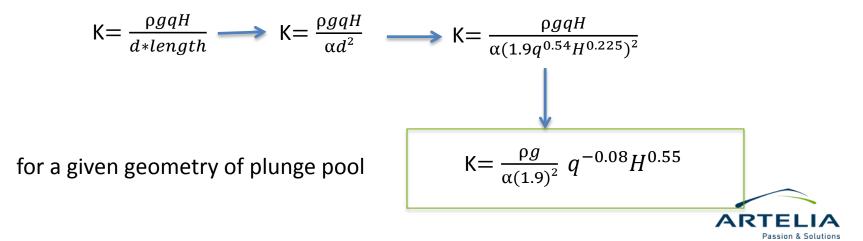
The only information of the dissipation rate can not represent the whole phenomena but give a global value for comparison

* Paper Jehanno et al. presented at Congress CFBR-SHF (2009) + additional investigations by ARTELIA



1. Dissipation rates

- As we can see :
 - Except for one singular value of 56 kW/m³,
 - K for plunge pools is included :
 - between 10 and 30 kW/m³
 - between 1.5 $\mathrm{H}^{0.5}$ and 3.5 $\mathrm{H}^{0.5}$



d: depth of erosion Veronese : d=1.9q^{0.54}H^{0.225}

 α = coefficient

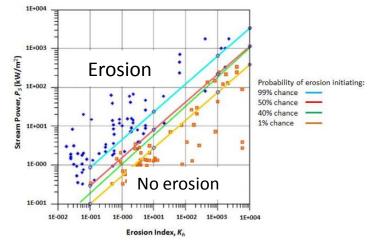
Dissipation rate = $K = \frac{\rho g Q H}{Volume of dissipation}$

Per width unit :

- Advantage : preliminary approach easy for implementation, based on previous experiences
- Limits : Do not take into account the characteristics of soil and rock materials

Technical feedback and ususal practices

of Artelia


2. Estimation of the erosion potential

Empirical and semi-empirical approach

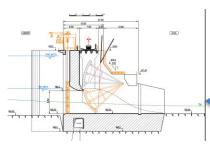
• Many empirical formulas were developed to compute the scour depths. Most commonly used: Veronese, Martins, Mason,....

Semi-Empirical approach (type Annandale)

- Comparison between the erodability index and the stream power
- Almost 150 observations (soil and rock)

Erosion potential – erodibility index versus stream power

Source: USBR standards. Chapter 3: General spillway considerations



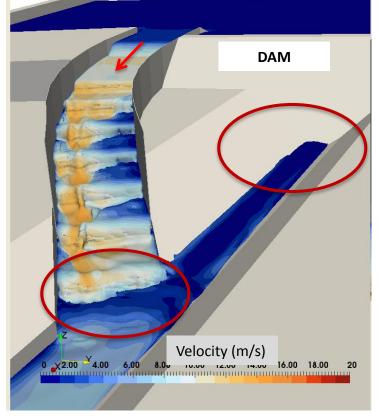
Passion & Solutions

2. Estimation of the erosion potential

These two methods were applied on a wide range of head, discharge, soil and rock materials

	Project	Structures	Stage of project	Head (m)	Discharge (m3/s)
-	Fufu (Malawi)	Ski Jump	Under design	120	4200
	Janneh (Lebanon)	Ski Jump	Under Construction	120	1300
	Beaumont-Monteux (France)	Gated dam	In operation	1-10	15-4900
	Nachtigal (Cameroon)	Downstream of gate	Under design	4-8	650-7500
	Antetezambato (Madagascar)	Downstream of gate	Under design	12	14000
	Rusumo (Rwanda)	Downstream of gate	Under Construction	9	200
ł	Marege (France)	Overflowing on existing arch dam	In operation	82	1450

- Problematic of erosion : critical issue for a number of projects
- As a first assessment, empirical and semi-empirical methods associated with dissipation rates allow for estimating the risk of erosion downstream of a dam
- These formula do not take into account the duration of the event in particular for extreme event (Q10 000, PMF)
- In order to get a more precise assessment of the erosion risk, a 3D approach is often used
 - 3D numerical model
 - Physical scale model


3. Previous experiences with 3D models

- **3D** numerical model : case of Bwanje dam in Malawi
- Physical scale model :
 - case of B7.2 dam in Oman
 - case of Katse dam in Lesotho
 - Case of Bunji dam in Pakistan

3. Previous experiences with 3D models

3D numerical model

Project :

- Bwanje dam (Malawi)
- Rockfill dam of 40 m height
- Stepped spillway

Main objectives of the model were to study:

- The flow conditions over the stepped spillway (nappe flow conditions)
- The flow conditions downstream of the spillway : especially to check velocities at the toe of the dam and into the river

Results

- Velocities< 14 m/s
- Verification of the erosion potential with a semiempirical approach (type annandale)
 - > No risk of erosion of the rock
 - > No risk of destabilization of the left bank

3. Previous experiences with 3D models

Model of ski-jump (B7.2 Dam Oman 1:80 scale)

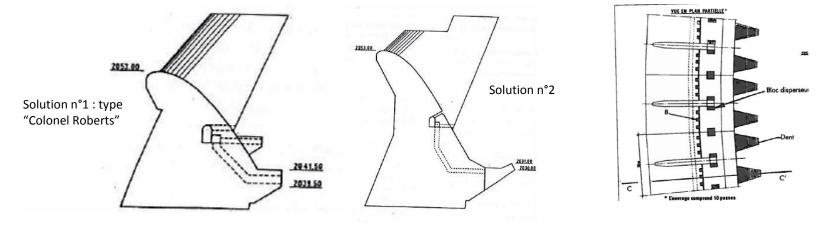
• Model for 40 m head

Main objectives of the model were to study:

- the conditions of the jet in the air and at the impact
- the risks of scouring in the wadi at the impact area

Results

- Part of the lateral nappe flowing straight ahead without jumping → Modification of the design of the ski-jump
- Estimation of 3 m of depth scour for PMF (30% less that the depth scour obtained with empirical formula (Veronese, Martins B).
- K=P/V=22 KW/m³



3. Previous experiences with 3D models

Model of ski jump (Katse dam – in operation since 1997)

• Model for high head (185 m of head)

The model have shown a clear advantage for the solution n°2 specially developped for this project (reduction of 7 m of the scour depth. 27 m instead of 34 m)

Reduction of 50 % of the minimum water depth to avoid erosion (27 m instead of 56 m (Veronese))

K=P/V=20 KW/m³

3. Previous experiences with 3D models

Model of plunging jet (Bunji dam in Pakistan)

	Head (m)	Water depth (m)
Cylindrical bucket	135	45
Circular lip bucket	141	39
Serrated bucket	144	36

Global conclusion

- Objectives: assess the erosion potential and check the dissipation of energy downstream of a dam
- As a first assessment, empirical and semi-empirical methods associated with dissipation rates allow for estimating the risk of erosion downstream of a dam
- Adopting dispersion teeth or other means to increase the effective length of jet impact, the scour depth will be decreased accordingly.
- In any case, for critical projects, results given by the two methods shall be checked on 3D model.
 - To take into account the aeration of the water jet
 - To check the return of high velocity flows in the river
 - To ensure that no high velocity flow can damage the structures, their foundations or banks stability

Technical feedback and ususal practices

of Artelia

Thank you for your attention!

