

NEW EXPERIMENTAL SET-UPS FOR STUDIES OF PLUNGING JETS

International Workshop on overflowing erosion of dams and dykes

Aussois – December 13th 2017

Yvan BERCOVITZ – EDF-R&D - yvan,bercovitz@edf.fr Grégory GUYOT – EDF-CIH – gregory.guyot@edf.fr

INTRODUCTION

What is the engineer problem to be solved ?

What is the current engineer approach ?

What is the research program ?

Overflowing at Lapalisse Dam

LDV Measurments

RESEARCH OBJECTIVES

- Jet trajectory
- Interfacial instability evolution
- Impact power
- Impact velocity
- Kinetic energy distribution along the fall
- Energy dissipation into the plunge pool
- Diphasic mixture into the plunge pool

Jet diameter 89mm, height 6 m, flow rate 150 l/s, 5500fps

CONTENTS

1. LAST DEVELOPMENT

2. EXPERIMENTAL SET-UPS

3. JET TRAJECTORY

4. BREAK UP LENGTH

LATEST DEVELOPMENTS.

ED

New experimental set-ups for studies of plunging jets | 12/2017 | 5

JET PENETRATION DEPTH

Measured penetration depth
Calculated penetration depth (Clanet 1997)
Calculated penetration depth (McKeogh 1981)
Calculated penetration depth (Falvey 1987)
Calculated penetration depth (Nakasone 1987)

Bubbles as jet penetration depth trackers

Wide range results in the available predictions

ROUND SHAPED JETS BREAK UP LENGTH

The Ervine 1997 model indicted that the jets are broken or nearly broken at the maximal observed fall height for 3 cases out of 5.

ROUND SHAPED JETS BREAK UP LENGTH

High speed videos show it's not

Jet diameter 164mm, height > 2.5 m, flow rate 50 l/s, 1250 fps

Jet diameter 135mm, height 2.57 m, flow rate 110 l/s, 5500 fps

No reliable prediction based on the literature
No available law of similitude

THE EXPERIMENTAL SET UP

Туроlоду	Characteristics	
Weir	Thin crest	
Overflowing length	1000 mm	
Tray length	2.9 m	
Calming means	Head lost + Honeycombs	
Maximum height of fall	9.5m / slab15 m / bottom of the pool(4 m of water heigth)	
Q max	500 l/s	
Measurment technics	ADV LS-PIV Photogrammetry 4 High speed cameras (1000 fps) 33 pressure sensors (100 Hz) LDV	

Overflow for 220 l/s

THE EXPERIMENTAL SET-UPS : ROUND JETS

Туроlоду	Characteristics
Nozzle	All kind /Round tested (Ø26 – 213 mm)
Max Falling height	12,5 m
Plunge pool depth	22,5 m
Flow rate/ velocity	2-320 l/s / 1-35 m/s
Measurement technics	Optical measurement Pressure sensors High speed cameras Momentum advection measurement

THE EXPERIMENTAL SET-UPS

PHOTOGRAMMETRY – DATA TREATMENTS

White water – side view

3D reconstituion (Photoscan – Agisoft©)

PHOTOGRAMMETRY - TRAJECTORY

Trajectory measurments

$$\frac{z}{H} = -0.5 \left(\frac{x}{H}\right)^{1.95} + 0.375H$$

JET BREAK UP

25 l/s

50 l/s

JET BREAK UP

D=213mm V₀=5,0 m/s D=35 mm V₀=5,0 m/sD=23 mm V₀=5,0 m/s D=89 mm V₀=1,8 m/s

CONCLUSION

- Insufficient literature
- No law of similitude available
- Need wide experimental set-ups
- High technology measurements
- Jet trajectory measument
- Jet break up not as expected
- First attempt numerical simulation (Neptune CFD, GPU SPH, OpenFoam)

Thank you

Feel free to joint the effort !

