RECLAMATION Managing Water in the West

Erosion Testing of Zoned Rockfill Embankments

Tony L. Wahl

Hydraulics Laboratory, Denver, Colorado

U.S. Department of the Interior Bureau of Reclamation

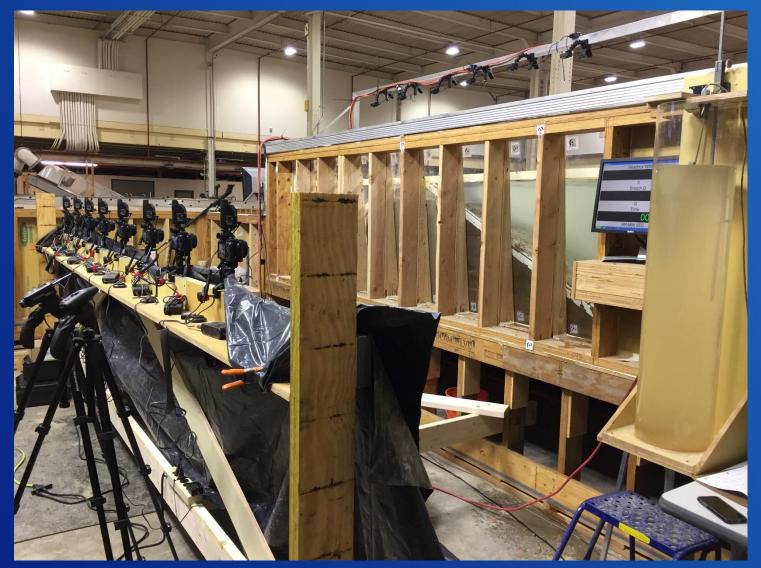
Overview

Three dam breach tests 2015-2017

- First test funded by Reclamation Dam Safety
 - Homogeneous silty clay soil (CL-ML), internal erosion
 - Baseline for subsequent tests, same soil later used as core of zoned embankments

– NRC-funded tests

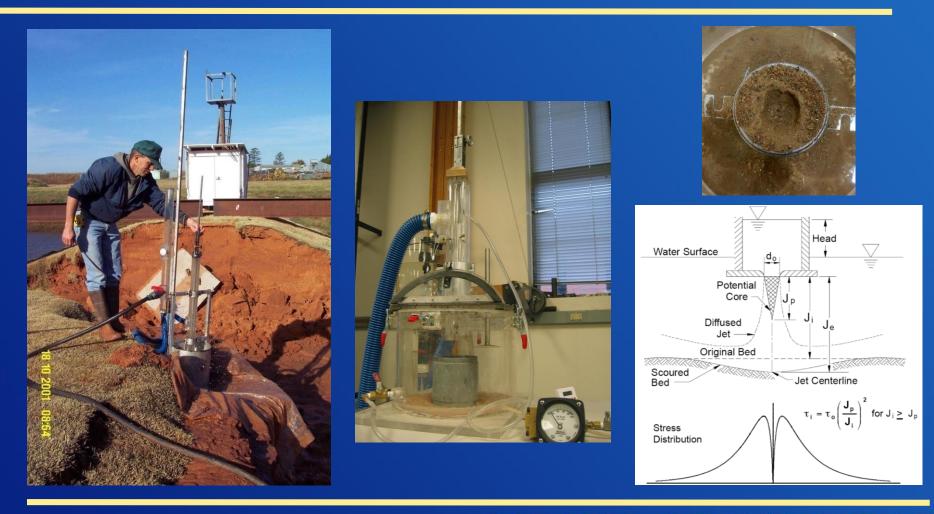
- Zoned embankment overtopping
- Zoned embankment internal erosion (this test is not discussed in this presentation)



Dam Breach Test Facility Denver, Colorado

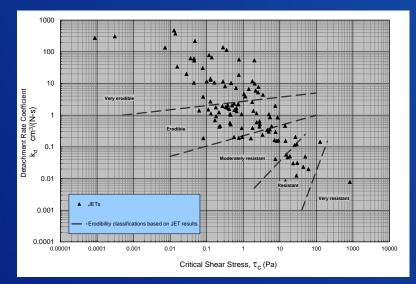
- 13-ft wide, 3-ft high embankment
- Inclined abutment (1:10), acrylic for viewing
- Large tailbox to contain breach outflow
- Headbox spillway with adjustable crest to maintain steady reservoir level

Imaging Equipment

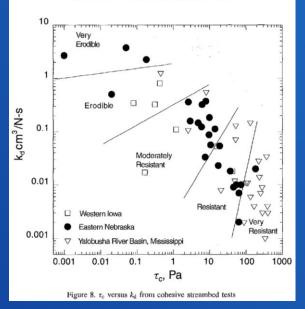

Objectives

- Observe erosion and breach development mechanics, compare to numerical models
- Materials
 - Establish erodibility parameters of soils
 - Demonstrate consistent relationships between applied stress, erosion resistance, and observed erosion

$$\boldsymbol{\varepsilon}_r = \boldsymbol{k}_d (\boldsymbol{\tau} - \boldsymbol{\tau}_c)$$



Submerged Jet Test - Erodibility



Erodibility varies widely

- Hanson and Simon (2001) study of streambed soils
- USBR studies of remolded soils

ERODIBILITY OF COHESIVE STREAMBEDS

Jet test was developed primarily for cohesive soils

Test 1

 Homogeneous embankment of Silty Clay (CL-ML), internal erosion triggered at mid-depth by withdrawing 0.5-inch rebar

 $\tau_c = 0.0015 \text{ psf}$ (from pre-test JETs)

 k_d=5.5 ft/hr/psf (Very erodible)

> t=6 min t=12 t=18 t=24 t=30 t=36 t=42 t=48 post-test

Figure 6. — Incremental erosion during internal erosion test of homogeneous silty clay embankment.

RECLAMATION

Total elapsed time = 48 minutes

Post-test modeling: WinDAM C

 WinDAM C is a dam breach model developed by USDA to simulate overtopping and internal erosion WinDAM C [Project: d:\BREACH\Geophysics Collab\BREACH TEST 1\WinDAM C] _ 🗆 🗡 🍓 Eile Edit View Windows Help _ 🗗 🗙 failures of 3.5 3 homogeneous 2.5 2 1.5 cohesive 1 0.5 embankments

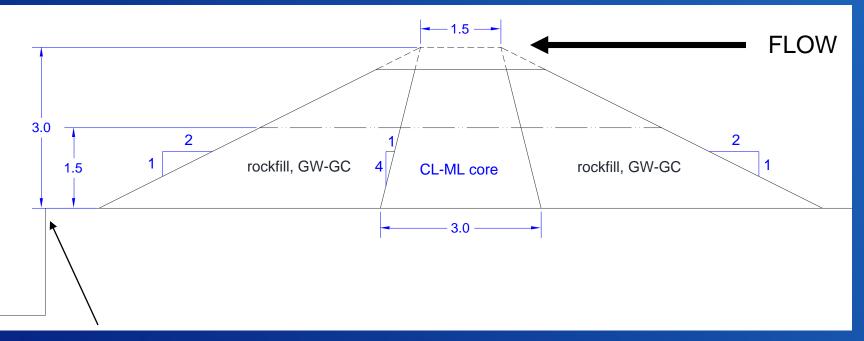
Post-test modeling: WinDAM C

- Good match of predicted breach outflows and internal erosion conduit sizes when we used k_d=2 ft/hr/psf and initial conduit size of 1 inch
- Close to actual conditions:
 - 0.5-inch rebar could have disturbed a larger area
 - k_d = 5.5 ft/hr/psf measured with JET

 ΔM

Zoned Embankment Objectives

- Not much experience with failure of rockfill dams
- Rockfill dams are difficult to evaluate
 - What are erodibility parameters (especially k_d) for gravelly soils?
 - How do different zones interact and affect one another?
- There are rockfill dams upstream from several U.S. nuclear facilities



What is rockfill?

- Consultations with embankment designers at USBR, USACE, etc.
 - Materials in rockfill dams vary widely
 - Usually broadly graded
 - Often "dirtier" than expected
 - Variability of behavior is common because segregation and layering often occur during construction

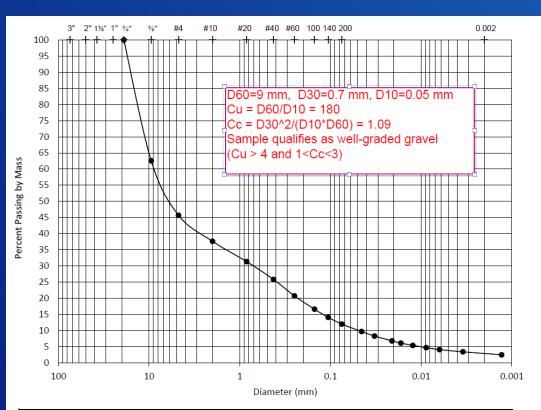
Zoned Embankments

- Modeled a relatively simple embankment design
 - Did not include modern features such as filters, drains, etc.

CLAMA

Note overfall immediately below embankment

Soils


- Rockfill zones represented by a Class 6 road base soil from local aggregate supplier
 - GW-GC (Well-Graded Gravel with Clay and Sand)
 - 12% fines (passing #200 sieve) with CL-ML (Silty Clay) classification

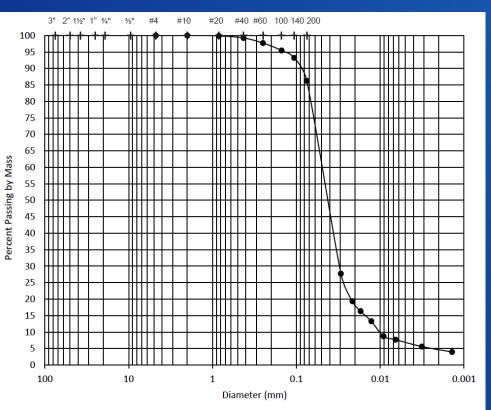
LL=25, PI=6

 Core is also CL-ML (Silty Clay) 86% fines LL=27, PI=6

GW-GC Rockfill

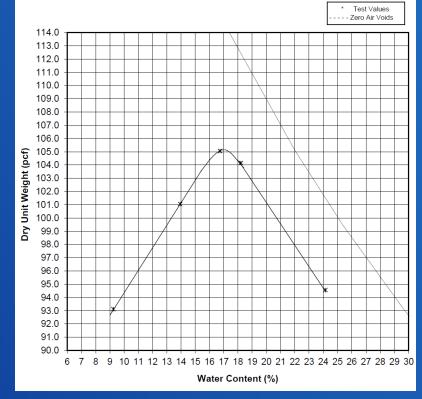
Cobbles (%)	Gravel (%)			Sand (%)		Fines (%)		
	54.3		33.7			12.0		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
		54.3	8.1	11.8	13.8	9.2	2.8	

150.0 149.0 148.0 147.0 146.0 145.0 144.0 143.0 142.0 141.0 Unit Weight (pcf) 140.0 139.0 138.0 137.0 136.0 Dry 135.0 134.0 133.0 132.0 131.0 130.0 129.0 128.0 127.0 126.0 0 1 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 6 7 8 9


Water Content (%)

RECLAMATION

LABORATORY COMPACTION TEST


* Test Values

CL-ML Core

Cobbles	Gravel		Sand			Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	

Cobbles (%)	Gravel (%)			Sand (%)		Fines (%)		
				13.7		86.3		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
				0.8	13.0	79.5	6.7	

LABORATORY COMPACTION TEST

Embankment Construction

JET test of core

Sand cone tests also performed to measure density of core and gravel zones

Approx. 100% of standard Proctor for all zones

Overtopping Test – 3 minutes

Overtopping Test – 5 minutes

Overtopping Test – 7 minutes

Overtopping Test – 14 minutes

Overtopping Test – 19 minutes

Overtopping Test – 26 minutes

Overtopping Test – 33 minutes

Overtopping Test – 37 minutes

Overtopping Test – 47 minutes

Overtopping Test – 77 minutes


Overtopping Test – 120 minutes

Overtopping Test – 180 minutes

End of Test

End of Test

Material Behavior - cohesive

Observations

- Although core and gravel zones both showed cohesive behavior (near-vertical sidewalls), erosion did not adopt a headcut pattern
- Surface erosion was dominant
 - Lack of tailwater pool to provide recirculation and accelerate erosion at toe

Post-Test Analysis

 Estimate erosion rates and hydraulic stresses from photo records and use to estimate values of k_d

$$\boldsymbol{\varepsilon_r} = \boldsymbol{k_d}(\boldsymbol{\tau} - \boldsymbol{\tau_c})$$

 Compare to Jet Erosion Tests (JETs) of soil in downstream rockfill zone

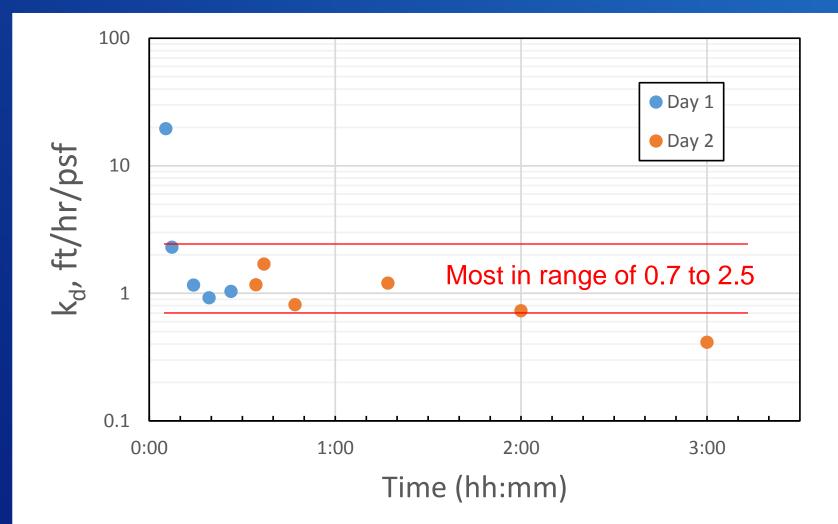

Estimate k_d from photos

Table 1. — Flow and breach channel properties used to estimate value of \underline{k}_d for gravel zone.

								Bed	
								position	
Elapsed	Channel	Flow			Channel	Manning's	Shear stress,	normal to	
time	width	depth	Discharge	Velocity	slope	п	$\tau_e = \gamma RS(n_s/n)^2$	slope, <u>ft</u>	k_d
hh:mm:ss	ft	ft	ft ³ /s	ft/s	ft/ft	-	lb/ft ²	ft	ft/hr/lb/ft ²
0:03:20	1.10	0.23	0.61	2.42	0.51	0.130	0.158	0.34	
0:05:20	1.16	0.23	0.73	2.69	0.53	0.122	0.193	0.45	19.59
0:07:20	1.22	0.24	0.84	2.92	0.57	0.118	0.225	0.47	2.31
0:14:20	1.42	0.24	1.17	3.43	0.58	0.105	0.305	0.51	1.16
0:19:20	1.57	0.24	1.50	3.94	0.60	0.095	0.398	0.54	0.93
0:26:20	1.77	0.25	1.81	4.13	0.60	0.093	0.432	0.59	1.04
0:34:28	2.07	0.25	2.01	3.88	0.62	0.104	0.376	0.64	1.17
0:37:00	2.08	0.26	2.01	3.79	0.58	0.103	0.357	0.67	1.70
0:47:00	2.10	0.29	2.21	3.61	0.53	0.112	0.313	0.71	0.82
1:17:00	2.16	0.38	2.5	3.02	0.49	0.148	0.204	0.82	1.21
2:00:00	2.25	0.61	3.63	2.66	0.45	0.201	0.141	0.88	0.73
3:00:00	2.38	0.64	4.55	3.00	0.32	0.157	0.177	0.95	0.41

RECLAMATIC

Estimates of k_d from photos

Jet Erosion Tests

- Hypothesis is that erodibility of mixed soils (granular & cohesive) is primarily determined by the cohesive fraction
 - Presence of gravel may also add marginally to erosion resistance (armoring, shielding)
- Used ASTM D4718 procedure to calculate a gravel correction to determine effective density and water content of the finer fractions of the well-graded gravel
 - Minus No. 4 and minus 3/8" fractions

JET specimens

- Two minus No. 4's compacted by hand to achieve calculated target densities (comparable to 100% standard Proctor)
- Two minus No. 4's using modified Proctor (4.5 times more energy) (109-114%)
- One minus 3/8" at standard Proctor
- One minus 3/8" at modified Proctor
- One whole gravel specimen at standard Proctor

Minus No.4, standard compaction specimens were a little more erodible than gravel zone in embankment, but in same order of magnitude

								a :: 1
				Water			Detachment	Critical
		Water	Dry	content of	Dry density of		rate	shear
		content,	density,	minus No. 4,	minus No. 4,	Compaction	coefficient,	stress, τ_c ,
ID	Specimen	w, %	γd, <u>lb</u> /ft³	w-4, %	γd-4, <u>lb</u> /ft ³	method	kd, ft/hr/lb/ft2	<u>lb</u> /ft ²
-	Reference	7.0	140.0	12.4	114.3	-	-	-
1	Minus No. 4 fraction	12.4	113.2	12.4	113.2	5-layers, target $\gamma_d = 114 \text{ lb/ft}^3$ w = 12.5%	5.1	0.00024
2	Minus No. 4 fraction	12.8	112.9	12.8	112.9	5-layers, target $\gamma_d = 114 \text{ lb/ft}^3$ w = 12.5%	4.9	0.00029
3	Minus No. 4 fraction	13.0	124.8	13.0	124.8	modified Proctor, 56,250 ft-lb/ft ³	0.63	0.025
4	Minus No. 4 fraction	11.4	130.3	11.4	130.3	modified Proctor	0.45	0.046
5	Minus 3/8- inch	11.0	132.3	14.2	121.7	standard Proctor, 12,375 ft-lb/ft ³	1.01	0.0056
6	Minus 3/8- inch	10.3	133.7	13.2	123.3	modified Proctor	0.31	0.044
7	Full sample	8.4	140.3	15.5	114.8	standard Proctor	3.1	0.07

- Minus No.4, modified compaction showed increased erosion resistance.
- Lower layers of embankment may have been overcompacted when upper layers were added.

				Water			Detachment	Critical
		Water	Dry	content of	Dry density of		rate	shear
		content,	density,	minus No. 4,	minus No. 4,	Compaction	coefficient,	stress, τ_c ,
ID	Specimen	w, %	γd, <u>lb</u> ∕ft³	w-4, %	γd-4, lb /ft ³	method	<u>kd</u> , ft/hr/lb/ft ²	<u>lb</u> /ft ²
-	Reference	7.0	140.0	12.4	114.3	-	-	-
1	Minus No. 4 fraction	12.4	113.2	12.4	113.2	5-layers, target $\gamma_d = 114 \text{ lb/ft}^3$ w = 12.5%	5.1	0.00024
2	Minus No. 4 fraction	12.8	112.9	12.8	112.9	5-layers, target $\gamma_d = 114 \text{ lb/ft}^3$ w = 12.5%	4.9	0.00029
3	Minus No. 4 fraction	13.0	124.8	13.0	124.8	modified Proctor, 56,250 ft-lb/ft ³	0.63	0.025
4	Minus No. 4 fraction	11.4	130.3	11.4	130.3	modified Proctor	0.45	0.046
5	Minus 3/8- inch	11.0	132.3	14.2	121.7	standard Proctor, 12,375 ft-lb/ft ³	1.01	0.0056
6	Minus 3/8- inch	10.3	133.7	13.2	123.3	modified Proctor	0.31	0.044
7	Full sample	8.4	140.3	15.5	114.8	standard Proctor	3.1	0.07

- Minus 3/8" specimens both showed more erosion resistance than comparable minus No. 4 specimens.
- Could be due to other factors. More testing needed to confirm trend.

			D	Water			Detachment	Critical
		Water	Dry	content of	Dry density of		rate	shear
		content,	density,	minus No. 4,	minus No. 4,	Compaction	coefficient,	stress, τ_c ,
ID	Specimen	w, %	γd, lb/ft ³	w-4, %	γ _{d-4} , <u>lb</u> /ft ³	method	kd, ft/hr/lb/ft ²	<u>lb</u> /ft ²
-	Reference	7.0	140.0	12.4	114.3	-	-	-
1	Minus No. 4 fraction	12.4	113.2	12.4	113.2	5-layers, target $\gamma_d = 114 \text{ lb/ft}^3$ w = 12.5%	5.1	0.00024
2	Minus No. 4 fraction	12.8	112.9	12.8	112.9	5-layers, target $\gamma_d = 114 \text{ lb/ft}^3$ w = 12.5%	4.9	0.00029
3	Minus No. 4 fraction	13.0	124.8	13.0	124.8	modified Proctor, 56,250 ft-lb/ft ³	0.63	0.025
4	Minus No. 4 fraction	11.4	130.3	11.4	130.3	modified Proctor	0.45	0.046
5	Minus 3/8- inch	11.0	132.3	14.2	121.7	standard Proctor, 12,375 ft-lb/ft ³	1.01	0.0056
6	Minus 3/8- inch	10.3	133.7	13.2	123.3	modified Proctor	0.31	0.044
7	Full sample	8.4	140.3	15.5	114.8	standard Proctor	3.1	0.07

Full gravel specimen was more erodible again, but still close to range of estimates for embankment rockfill zone. This specimen is probably pushing the limits for doing a valid JET test (too much gravel, too big).

		Watan	Dest	Water	Dry density of		Detachment	Critical shear
		Water	Dry	content of		Composition	rate	
-	~ ·	content,	density,	-	minus No. 4,	Compaction	coefficient,	stress, τ_c ,
ID	Specimen	w, %	γa, <u>lb</u> /ft³	w-4, %	γd-4, lb /ft ³	method	<i>k_d</i> , ft/hr/lb/ft ²	lb/ft ²
-	Reference	7.0	140.0	12.4	114.3	-	-	-
1	Minus No. 4 fraction	12.4	113.2	12.4	113.2	5-layers, target $\gamma_d = 114 \text{ lb/ft}^3$ w = 12.5%	5.1	0.00024
2	Minus No. 4 fraction	12.8	112.9	12.8	112.9	5-layers, target $\gamma_d = 114 \text{ lb/ft}^3$ w = 12.5%	4.9	0.00029
3	Minus No. 4 fraction	13.0	124.8	13.0	124.8	modified Proctor, 56,250 ft-lb/ft ³	0.63	0.025
4	Minus No. 4 fraction	11.4	130.3	11.4	130.3	modified Proctor	0.45	0.046
5	Minus 3/8- inch	11.0	132.3	14.2	121.7	standard Proctor, 12,375 ft-lb/ft ³	1.01	0.0056
6	Minus 3/8- inch	10.3	133.7	13.2	123.3	modified Proctor	0.31	0.044
7	Full sample	8.4	140.3	15.5	114.8	standard Proctor	3.1	0.07

Minus No. 4 (3/16")

minus 3/8"

full gravel up to 3/4"

Summary

Overtopping test

- Erodibility (k_d) of gravel zone estimated from embankment test observations matches well with JET tests
- Understanding erodibility of mixed gravel & cohesive soils is a big challenge as ratio of coarse-to-fine soil changes
- This gravel had enough fines to behave like a cohesive soil, but what about...
 - Cleaner rockfills ???
 - Cobbles and boulders???
- There is still uncertainty predicting when headcut erosion or surface erosion will take place