

USDA-ARS HERU Embankment Erosion Research: Past, Present, Future

Sherry L. Hunt, PhD., Research Leader and Research Civil Engineer Darrel M. Temple, P.E., Retired Research Leader Ron Tejral, P.E., Agricultural Engineer

> USDA-Agricultural Research Service Hydraulic Engineering Research Unit

International Workshop on Overflowing Erosion of Dams and Dykes December 11, 2017

Overview

- Background to USDA Small Watershed Program
- Challenges
- Research Drivers
- WinDAM Development and Future Direction
- Impact of the Research and Application

USDA Small Watershed Program

USDA Small Watershed Program

United States Department of Agriculture

Challenges

- Competition for food, fiber and water
- Climate change
- Aging infrastructure with structural deterioration and/or sedimentation
- Urbanization

Initial Research Drivers

 Increased focus on aging structures and changes in hazard class

- SITES spillway erosion model
 Field observation of overtopped dams
 - Similarity of embankment and spillway erosion

processes

Soil erosion research
 > High stress detachment
 > Headcut advance

Initial Research Drivers (cont)

- Two primary ways embankments fail
 - > Overtopping
 - Internal erosion

- Need for process based model to evaluate what if scenarios of dam overtopping and failure
 - Prioritization of Rehabilitation
 - More in-depth development of inundation mapping of specific sites
 - More in-depth evaluation of EAPs in some cases
 - Extent of flooding
 - Breach Timing
 - Evaluation of single sites and sites in series

Embankment Overtopping/WinDAM A Development

Vegetal Protection

Riprap Protection

Embankment Overtopping/WinDAM B Development

Embankment Overtopping/WinDAM B Development

Overtopping Breach

Homogeneous embankment dam

- Stage 1: Formation of headcut on downstream face
 - Failure of surface protection (if any)
 - Downward erosion to form headcut
- Stage 2: Breach initiation headcut advance through crest
- Stage 3: Breach formation local removal of embankment
- Stage 4: Breach widening and stored water release

Stage I 0 < t_1 < 16 min

Stage II 16 < t_2 < 31 min

Stage III 31 < t_3 < 51 min Stage IV t_4 > 51 min

f, formation time

United States Department of Agriculture

Internal Erosion/WinDAM C Development

United States Department of Agriculture

Internal Erosion/WinDAM C Development

Internal Erosion Breach

Homogeneous embankment dam

- Initiated by horizontal flow path through embankment
- Headcut may form at exit to slope
- Conduit expansion and headcut advance may take place simultaneously
- Conduit may flow full or have free surface over a portion or entire length
 - Conduit expansion based on average boundary stress

United States Department of Agriculture

🔌 WinDAM C [Project: c:\WinDAMDemo]	
<u>File Run View Options W</u> indows <u>H</u> elp	
WinDAM C - Input Interface WinDAM C (Version 1.1)	
	WinDAM C [Project: c:\WORK\WinDAMC\DecEx]
Next Screen	Project ID: Example Comments Demonstration data set Internal erosion in large dam No inflow
	Dvertopping Rating Option C User Specified Discharge Coefficient Simple Dam Cross Section Template Dam Slope Protection C Earth (Vegetated) Downstream Slope C No Breach Analysis
	 Riprap Downstream Slope Overtopping/Breach Analysis Internal Erosion Breach Analysis Next Screen Previous Screen Home Screen Help

WinDAM Reservoir Routing

- Inflow hydrograph as input from "other software"
- Outflow hydrograph exported to "other software"
- Level surface routing with stepwise steady state computations
- Principal and up to three ungated auxiliary spillways
 - Earth auxiliary spillway integrity analysis may be performed
- Dam overtopping
 - Dam crest elevation varied along length of dam
 - >Vegetated or nonvegetated crest conditions
- Breach outflow with progressive breach erosion
- Tailwater influences on discharge included

WinDAM Breach Prediction

- Simplified dominant process erosion model(s)
- Attempt to simulate behavior observed in large scale laboratory tests
- Homogeneous earthen embankment with simple cross section
- Breach initiated by overtopping or horizontal flow path through embankment

HERU Project Plan – 2017-2022

Project Title: Development of Engineering Tools for the Design and Rehabilitation of Safe, Efficient Embankment Protection Alternatives, Hydraulic Structures, and Channels.

• **Objective 1:** Improve the WinDAM model to predict the erosion of complex embankment geometries and composite materials, and the allowable overtopping flows for alternative materials, including articulated concrete blocks or riprap integrated with vegetation

HERU Project Plan – 2017-2022

Subobjective 1A: Quantify the impact of complex vegetated embankment geometries on erosion process during overtopping including: convergence zones at the intersection of the earthen embankment and valley walls and embankment berms and toes. (Vacant SY and Hunt)

 Subobjective 1B: Quantify the impact of changes in soil materials (specifically zoned vs. homogenous) on erosion processes and rates of earthen embankment erosion and breach. (Vacant SY and Hunt)

WinDAM D Development

Impact of the Research and Application

- Prioritization of Rehabilitation
- Improvement of Flood Warning Systems
- Development of Emergency Action Plans
- Zoning Regulations

Summary

- WinDAM is an implementation of research conducted by the USDA Agricultural Research Service.
- The ongoing research is driven by the needs of the USDA Natural Resources Conservation Service and others in the dam safety community.
- WinDAM is being developed through the joint efforts of the ARS, NRCS, and KSU.
- WinDAM C is the current CCE approved version of the program.

Summary (Continued)

- WinDAM C Breach Model
 - SIMPLIFIED dominant process model
 - Attempts to simulate observed breach processes
 - Applicable to homogeneous embankments
 - > Overtopping and internal erosion components
 - > Testing for code verification is ongoing.
 - > Additional validation testing is needed.
 - Research in the area is ongoing to refine the model(s).

Questions......

USDA is an equal opportunity provider and employer.