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USACE Inventory of Dams
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Dam Internal, Overtopping and Spillway Erosion Examples
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Levees and Floodwalls
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e About 15,000 miles in the National evee Database with USACE Nexus (typically
USACE Designed and Built, Local Sponsor Operated)

e USACE Operated limited generally to lower Mississippi Valley below Memphis
District

* Probably 50,000 to 100,000+ miles in the nation per NLSC reports



Levee Erosion Examples

Performance Evaluation of the
New Orleans and Southeast Louisiana
Hurricane Protection System

Figure 13-14. IHNC East, Approximate B/L Sta 101400 (from drawing file H-2-24111, plate IV-23, DM2
Supp B IHNC Remaining Levees), North of Chef Menteur Hwy Bridge. Top of |-wall is elev
14.75, bottom of concrete is elev 7, and levee crown is elev 9. Nearest B/L boring is Sta 96+00
(No. 9EU), 500 feet distant. Approximate storm surge impact was a 2.5-ft water crest
cascading over the 6-ft concrete wall. Note that the scour was deeper than the concrete base,
indicating that the structural backfill and the original levee material eroded

INTERIM FINAL



Katrina Flood Wall and

Embankment Overtopping Erosion

Figure 22. Example of breach along IHNC (east side) from overtopping
and scour (top) and scour behind adjacent section that did not {
fail (bottom).

[nitial Stage A: Erosion due to overtopping
on the Citrus Back Levee

tage C: Crown scour along the MRGO levee
St. Bernard Parish

Stage B: Headcut erosion along the IHNC

Stage D: Overtopping erosion at Bayou Dupre
in St. Bernard Parish




Transition Area Armoring

ZONE 1 ZONE 2 ZONE 3

TOP OF FLODDWALL
v

LEVEE CREST
v

e Zone 1 is the floodwall-only section:
e Zone 2 is the sloping section of levee that overlaps with the floodwall

» Zone 3 is the levee-only section

9/81



Transient Wave Loading
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2011 Missouri River Flood - Riverside Scour




Presentation Topics

e US Army Corps of Engineers Inventory and Performance Challenges

* Flood Risk Management Erosion Issues
e Risk Analysis — Hazard, Performance and Consequences
e Potential Failure Modes Analysis and Event Trees
* Consequences
e Risk-Informed Design Progression

e Erosion Engineering Needs
* Models
* Parameters
* Critical Shear Stress
* Erosion Coefficient
* Wave Overtopping Erosion Thresholds and Rates

e Discussion/Questions




 Bureau of Reclamation

U.S. Department of the Interior

.S. Army Corps of Engineers
UILDING STRONG®

Version 4.0
July 2015

Best Practices in Dam
And Levee Safety Risk Analysis

A Joint Publication by
U.S. Department of the Interior, Bureau of Reclamation, and
U.S. Army Corps of Engineers

With Contributions By:

Bureau of Reclamation Corps of Engineers
William B Fiedler, P.E. Gregg A. Scott, PE.
Civil Enminesr Crvil Engineer
John England. PhD, P.H., PE. Earl M. Dise, P.E.
William Q. Engemeen, P.E Mathan J. Soorteland, PE.
Geotechnical Engineer Geotechnical Engineer
Damiel Levish, FhD} Rick W. Schultz, P.E.
Seismolog Mechanical Engineer
Steve Domume, P.E Timothy M. O'Leary, P.E.
Structural Engineer Geotechnical Engineer
Phoebe Percell PE. Charles G. Redlinger, PE
Structural 1 Geotechnical Engineer
Dantel Osmun, P.E. Jeffrey T. McClenathan, P.E.
Geotechnical Enginesr Hydraulic 1
Lany K. Nuss, P.E. Dawid A Margo, P.E.
Structural Engineer Hydraulic Engineer
John Trojanowsk:, P.E. Dawvid ML Schaaf, P.E.
Civil Engineer Structural Engineer
Dawvid . Gillette, FhD, P.E. Jeffrey A. Schaefer, PhD, P.G., P.E.
Geotechnicz] Engineer Geotechnical Engineer
Larry W. Anderson. P.G. Peter T. Shaffner. P.G.
Geologist Geologist
Pencheng Lin Jason T. Meedham PE
Setsmologist H 1 1
Dom Galie, FhD, P.E. Eent G. Walker, PE.
Geotechnical Engineer Hydraulie Engineer
Bruce Feinberg, P.E. Thomas Terry, P.G.
Hydraulic Enginesr ist
Scott E. Shewbridze, PFhD, P.E.
Geotechnical Engineer

Thiz manual was developed for intarmal use. The authors and agencies make no guarantses as to the
accuracy or applicability of the fnfermation presented herain.




Failure Mode, Event Tree, Risk Plot
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Hurricane Wind Wave Overtopping Erosion Event Tree
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Risk-Informed Design Progression
Alternatives Analysis
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FIG. 2.—Breach Size versus Breach Development Time

MacDonald Langridge-Monopolis 1984

Traditional Methodology — Assume it fails, estimate breach size and then breach formation time.

Based solely on analyses of dams that failed, does not include case histories of dams that overtopped, but didn’t fail.



Breach Outflow Hydrograph, Inundated Area, Loss of Life and Property

Table 28. Results of the WinDANM B analysis for kd parameters that (1) result in failure, (2) are considered in
Distribution 2, and (3) are modeled using a PMF event that results in 6.1 ft of overtopping

Maximum High Pool Failure Event e = — P
2,000,000 Breach Total ay Breach
kd Formation Width Outfl Outflow Outfl
1,800,000 Time ! ow (cfs) ow
1,600,000 (cf5) (cfs)
e 0.094 214 478.3 1,795,797 279468.6 1,400,840
1,400,000 0.085 235 4786 1,598,487  279486.1 1,203,530
.,.E 1,200,000 0.075 26.6 478.7 1,377,938 279489.4 982,981
;- 1,000,000 0.065 30.9 479.5 1,142,044 279489.5 747,087
o 0.056 36.9 481.2 927,653 279489.5 532,696
w 800,000
0.044 50.9 484.4 643,979 279490 249,022
600,000 0.038 65.2 482.7 500,479 279490 105,522
400,000 0.035 78 479.8 420,924 279490 25,967
200,000 0.032 110.6 4738 394,960 279490 3
ol TS Non-
0.008 Breach 7.7 394,957 279489.5 Non-Breach
o0 50 100 150 200
Table 6-6: Estimated Life Loss by Loading Condition (with Proposed Spillway)
Time - Hours Loading ¢ on ytime
J 0 o = X With Failure Min Mean Max Min Mean Max
", \ i = 1.5 PMF 77 520 1225| 1,243| 1689] 2377
" 1 it ! X PMF 76 495 1,148 1,061 1,515 2,249
| '.\ 3 300-yr 34 267 1,223 578 868 2,113
A o ; TAS 75 | 1,388| 6,790 578 | 2324| seEn
) ) 100-yr 504 706 | 2,835 ss2|  1,392] 4,050
& No Fail
1.5 PMF 21 94 201 189 270 392
PMF 10 68 161 155 221 329
300yr 2 17 33 8 101 119
/ TAS 0 0 0 0 0 0
i 100-yr 2 9 20 52 60 74
[ . e o e High Posi 1.5PMF 56 226| 1,024| 1,054| 1,419] 1,985
“u _-—— PMF 66 427 987 906 | 1,294| 1,920
\ 300-yr 30 250 1,190 494 767 1,994
| \ TAS 75 1,388 6,790 578 2,324 8,871
' 100-yr 502 697 | 2,815 so0|  1332] 3,976
h Y \ Seismic with Failure
\ : TAS - Delayed 28 100 206 523 601 721
‘\ Ig TAS - Initial 87 536 1,214 587 1,100 1,873
% A Il » B TAS - Immediate 965| 1591 7,475] 2711 5784 9,814




Risk-Informed Design Progression
Alternatives Analysis
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Breach and “Formation” Stages

l. Flow over the embankment initiates at t = t,. Initial overtopping
flow results in sheet and rill erosion with one or more master rills
developing into a series of cascading overfalls (Figure 12a).
Cascading overfalls develop into a large headcut (Figure 12b and
12c). This stage ends with the formation of a large headcut at the
downstream crest and the width of erosion approximately equal to
the width of flow at the downstream crestatt =t,,

Il. The headcut migrates from the downstream to the upstream
edge of the embankment crest. The erosion widening occurs due
to mass wasting of material from the banks of the gully. This stage
ends when the headcut reaches the upstream crest at t = t, (Figure
12d),

Figure 12. Generalized description of observed erosion processes during ARS overtopping tests: a)
rills and cascade of small overfalls during Stage L b) consolidation of small overfalls during Stage L
c) headcut at downstream crest, transition from Stage I to Stage IL d) headcut at upstream crest,
transition from Stage I to Stage IIT at breach initiation t = t;. €) flow through breach during Stage I
and f) transition from Stage III to Stage IV at breach formation t =t

lll. The headcut migrates into the reservoir lowering of the crest
occurs during this stage and ends when downward erosion has
virtually stopped at t = t; (Figure 12e). Because of the small
reservoir size, the peak discharge and primary water surface
lowering occurred during this stage, and

IV. During this stage breach widening occurs and the reservoir
drains through the breach area (Figure 12f). In larger reservoirs,
the peak discharge and primary water surface lowering would
occur during this stage (t; < t < t,) rather than during stage Ill. This
stage may be broken into two stages for larger reservoirs
depending on the upstream head through the breach.




Overtopping Breaching of Noncohesive Homogeneous Embankments (Coleman et al 2002
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Fig. 2. Breach development for coarse-sand embankment. Curved
breach crest line (of length L, in plan) is highlighted for breach after
113 s
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Evaluation and Development of Physically-Based Embankment Breach
Models
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ABSTRACT: The ('E.A.H Dam ‘S:feh I.merest Gmup CDSIG) wm'kmz Zoup on embankment erosion and
breach modelling has used to simulate embankment ero-
sion and breach de\alopmam_ I'he three muda]..)dannﬁadb\ ﬂ:le gmup were considered to be good candi-
dates for finther devel, and fature 1 into flood modelling software. The evaluation utilized 7
case studies compnsing three large-scale tests camed out m Norway (3- to 6-m high embankments); two
large-scale tests fom the USA (1.75-m high embankments); and the prototype failures of the Oros (Brazil)
and Bangizo (China) dams. The treach models evaluated were SIMBA, HR-BREACH, and FIREBIRD
BREACH. Results of the evaluation are presented along with details of the continued development of two of
the three models (HR. BREACH and SIMBA).

Evaluation and Development of
Physically-Based Embankment
Breach Models

1 INTRODUCTION The development and integration of next-

By M.W. Morris, T.L. Wahl, R.D. Tejral, G.J. Hanson, and D.M.
Temple

U.S. Department of the Interior

Bureau of Reclamation

Technical Service Center

Hydraulic Investigations and Laboratory Services Group
Denver, Colorado

of electric
power generating utilities with commeon research m-
terests) initiated 2 new research project alming to
advance the state of practice for computer modelling
of embankment dam erosion and breach processes.
A working group was formed, composed of repre-
sentatives from CEATI-member utiliies with a
strong interest in thas topie, including several pursu-
mg dam breach modelling research programs of their
own. Other orgamzations with strong research pro-
grams on this topic were alse imvited to jom and par-
ticipate in the workmg group. The resulting collzbo-
ration has brought together many of the most active
researchers and crgamizations workmg on dam
breach modelling worldwide (Table 1).

The working group has pursued this research us-
mg 2 phased ch The fost phase reviewed

In 2004 lhe Dam Safety I.nrerﬁt Group of CEATI  generation dam breach modelling tools into dynamic
1(zn flow

od routing models and the contimed improve-
ment of those models gomg forward 15 the long-term
objective of the CEATI-sponsored project. The
models md.ledﬂ:lm far are focused promanly on the
overtopping' failure mode and relatively simple em-
ies, but is underway
on modules to smmulate intemal erosion and more
complex embankment gecmemp_a These capabili-
fies are expected to continue to mmprove over time.

Table 1. — Mambers of the CEATI Working Group, and other
project 5.

approal
historical developments related to phv:acal modeling
of dam breach p in lzboratory emv

(Wahl 2007) and ongomg effarts to develop m-
proved numerical models (Kahawita 2007). Labora-
tory test data were compiled, espectally results from
recent, large-scale physical model tests, and real-
world case study dam falwe data were also cul—
lected (Cuum-.md 2007y, The review of

models identified three computer models that the
working group chose to evaluate in a second phase
of the project using the assembled laboratory and
real-world case smdy data sets. Summary resulis
from that evaluation effort are discussed in this pa-
per.

St smesmam: cruret u e, nmaricnt, Cona s v, it e
S ork o 1 Sostuhs Goutmem E

! In this paper, the term ‘overtopping’ is used to mean the
contimous overflow of water rather than wave overtopping.




Model Comparisons

| HR-BREACH |[SIMBA /WinDAM | FIREBIRD [NWS-BREACH

[Erosion Process Models Good Good Fair Limited
egetation
(CIRIA) and rip- | Vegetation, riprap
Surface protection rap in WinDAM Limited Yes
|Headcut erosion Good Best No No
Stress-based — Yes — —
Energy-based Yes Yes (in WinDAM) — —
Surface erosion Yes No Yes Yes

Stress-based
bank failures and Bank failures

IMass-wasting / soil-wasting arch failure implicit Some Some
[Effects of Submergence Yes Yes (in WinDAM) No Yes
[Piping progression Yes In development Some Yes
|Data Input Guidance Good Good Limited Limited
|Ease of Use Good Good Difficult Difficult
|Computati0nal Efficiency Good Good Fair Good
|D0currrentatir:rn Excellent Excellent Limited Good
Organizational Support for

Continued Development Good Good Weak None
Embankment Geometry Homogeneous, Simple Primitive

Options Simple Zoning | (Zoned in future) | Zoning Zoning
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Soil Erosion Model

10.3 Ewaluation of Surficial Current and Wind/ Wave Action Erosion.

10.3.1 Several erosion studies have been performed that focus on identifying the erosion
parameters and correlating those parameters to formulate an expression (a physical model) for

crosion rates (Hanson and Temple. 2001; Hanson and Cook. 2004). The governing equation for
this model 1s:

¢ =(k(t—1) (10-1)

(10-1)
where

& =erosion rate

k= erodibility coefficient or detachment rate coefficient (ft/1b-hr)

7= effective hydraulic stress on the soil boundary (b f‘rl}

7= critical shear stress (Ib/ft7). 1.e. the shear stress at which erosion starts

10.3.2 The erosion rate ( £) 1s a function of both hydraulic (7) and geotechnical (k. 7.)
parameters. Effective hydraulic stress (7) mainly depends on characteristics of water-soil
boundary. current/stream veloeity and/or wind wave height and period. Both k and 7 are

functions of the engineering properties of the levee and the foundation materials. The following
sections describe the hydraulic and geotechnical parameters in the above model.



“Hanson” erosion resistance, “Briaud” erodibility, and Levee Erosion Toolbox (URS 2007) default values for ky and associated tc for the various
“Hanson” erosion resistance classifications and Shield’s Diagram tc from Briaud (2001) to be cited as the primary source for analysis parameters
in Engineering Manual 1110-2-1913.
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Factors Likely Affecting Critical Shear Stress

 Slope of Eroding Surface
 Cementation

e Compaction
e Compaction Energy Level
* Moisture Content

e Consolidation
e Age?



Uncemented, Normally Consolidated Materials
Critical Shear Stress — Horizontal Flow
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Uncemented Materials
Critical Shear Stress — Decreases with Increased Slope of Eroding Surface
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Cemented Materials

Critical Shear Stress — Increases with Cementation
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Compacted Materials

Critical Shear Stress — Increases with Compaction Effort
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Compacted Materials
Critical Shear Stress — Increases up to Optimum Compaction Water Content
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Consolidated Materials
Critical Shear Stress — Increases with Maximum Past Pressure
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Changes with Time?
Critical Shear Stress — Horizontal Flow
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Are There Similar Variations in K,y with Variations In the Same Factors?
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Variations in Soil Type and Compaction Moisture Content

Property of tested soils at the USDA-ARS Laboratory.

Table 1.
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Variations in Compaction Effort and Moisture Content

100
Table 1. Property of tested soils at the USDA-ARS Laboratory.
LOW Atterberg Limits Texture
Soil Sample uscs Liquid Plasticity % Sand % Clay
= 10 | Designation | Classification | Limit(%) | Index (%) | >0.074 mm | <0.002 mm
2 Modified (High) A By v | 7 5
g B SM NP NP 64 9
- C ML 23 3 32 15
k4
1 - u
G CL 37 17 13 35
1 L 1

1
8 12 16 20 24
Water Content, WC (%)
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Kd

L

N-
{cm™/N-s) 01
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Dsp (mm) Hanson et al 2010




We have data supporting Kd values for Clay and Silt, but not for Gravel.
Does an inclined gravel have a K like an inclined sand?

Does a clean gravel have a K, like sand or like clay?
Does a clayey gravel have a Ky like sand or like clay?
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100 - ?
To many, it seems
10 likely that gravel and
Briaud 2009? cobbles would have
g 1 -~ Wahl 20147 a lower Kd than
:E ‘ sands, but we have
(em7/N-s) 0.1 > 1 little data to support
: how much lower.
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0.0001
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Transient Wave Loading
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a) Wave Overtopping
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vertopping Breach Event Trees
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Estimation of Erosion Rates Based On
CSU Flume Test Results

Wave Overtopping Simulator Testing

of Proposed Levee Armoring Materials
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Levee Grass Armoring Fails

_——EventInformation —Event Information
Overtopping Flow Rate: _( 0.01cfs/ft ) Overtopping Flow Rate{ 1.0 cfs/ft )
Type of Loading: “Eenstantevertopping flow Type of Loading: vertopping flow

Influence Factors

Influence Factors

More Likely Factors

Less Likely Factors

More Likely Factors

Less Likely Factors

Can’t count on 100% grass coverage
due to salinity in the levee
environment

No case histories of actual levee
performance

If levee materials contain silt or sand,
their erosion resistance would be
reduced

Levees could contain man-made or
animal defects that could lead to poor
performance

0.01 cfs/frisless than European
standard design flow for sandy sites
(typically as high as ~0.1 ¢fs/ft)

The levee embankment soils will be
clay which is expected tohave a
tolerable flow rate on the order of 0.1
cfs/ft

Viemamese case histories indicate
Bermuda Grass slopes can begin to
sustain damage at overtopping rates of
0.5t0 0.7 ¢fs/ft (Trung etal, 2010 and
Tmungetal, 2011)

USCS allows grass-lined channel
velocities of up to 5 ft/sec (USDA-
SCS, 1984)

New Orleans District earthen channels
are designed for velocities of less than
3 ft'sec

The Netherlands model studies
showed thatnominal grass cover can
withstand up to 0.54 cfs/ft (Wise,
2010)

CSU model studies showed that
Bermuda Grass with exceptionally
high root density did not fail at flow
rates of approximately 4 ¢fs (Thomton
etal, 2010)

Can’t count on 100% grass coverage
due to salinity in the levee
environment

No case histories of actual levee
performance

If levee materials contain silt or sand,
their erosion resistance would be
reduced

Levees could contain man-made or
animal defects that will lead to poor
performance

0.1 cfs/ftis in the maximum range of
the European standard design flow for
sandy sites

The soils are clay here which is
expected to have a tolerable flow rate
on the order of 0.1 cfs/ft

Vietnamese case histories indicate
Bermuda Grass slopes can begin to
sustain damage at overtopping rates of
0.5t0 0.7 cfs/ft (Trung etal. 2010 and
Trung et al, 2011)

The Netherlands model studies
showed that nominal grass cover can
withstand 0.6 cfs/ft (reference, year)

USCS allows grass-lined channel
velocities of up to 5 ft/sec (USDA-
SCS, 1984)

New Orleans District earthen channels
are designed for velocities of less than
3 ft'sec

CSU model studies showed that
Bermuda Grass with exceptionally
high root density did not fail at flow
rates of approximately 4 ¢fs (Thomton
etal, 2010)

The levees are anticipated to be
entirely composed of clay withouta
sand core
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Probability Grass Armor Fails as a Function of Average Overtopping Flow

Rate

Probability of Levee Grass Failure
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Estimate of Bare Soil Erosion Rates
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Figure 3-3. Soil surface following first hour of bare soil testing 33/38
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Bare Clay
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Approximate erosion loss rates

Upper Steep Slope

Lower Flatter Slope

<1 ft/ hour Slightly more (transition
(apparent problem with problem

concentration at transition)

<0.1 ft / hour ~1.95 ft / hour
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