

Soil microstructure and susceptibility to suffusion

[Dr Tom Shire](https://www.gla.ac.uk/schools/engineering/staff/thomasshire/)

School of Engineering, University of Glasgow

2nd February 2021

Outline

• Experimental evidence for effect of mechanical stress on suffusion

• DEM analysis: Effect of microstructure on fine particles under isotropic stress

• DEM analysis: Effect of microstructure on fine particles under shearing

Effect of stress on the initiation of suffusion

Skempton and Brogan (1994):

- Experiments on *unconfined* gap and broadly-graded soils with upward flow
- "segregation piping" at low hydraulic gradients (icrit ≈ 0.2)

Hunter and Bowman (2018) [https://doi.org/10.1680/jgeot.](https://doi.org/10.1680/jgeot.17.P.161) 17.P.161

Skempton and Brogan (1994)

Critical Hydraulic Gradient - i_{crit}

For internally stable soils:

i_{crit(heave)}: hydraulic gradient at which $\sigma_{\underline{v}}' = 0$

$$
i_{\text{crit(heave)}} = \gamma'/\gamma_{\text{w}} \approx 1.0 \text{ (Terzaghi, 1925)}
$$

For internally unstable soils:

Fig. 9. Material A: strong general piping of fines $(i = 0.22, v = 0.27$ cm/s)

Skempton and Brogan (1994)

Hydromechanical criterion

Skempton and Brogan (1994):

Fines carry reduced effective stress:

$$
\sigma'_{\text{fine}} = \alpha \sigma'
$$
\n
$$
\sigma'_{\text{fine}} = 0
$$
\n
$$
\sigma'_{\text{fine}} = 0
$$
\ni

\ncrit(fine) = \alpha i_{\text{crit(heave)}}

Fannin and co-workers at UBC: permeameter with variable top-stress

UBC large permeameter

UBC large permeameter

Different soils produce failure envelopes with different gradients

Li and Fannin (2012) related slope of envelope to Skempton's α

Li (2008) related α to geometric criteria, e.g. *D¹⁵ coarse/d⁸⁵ fine* (Kezdi, 1979)

But effect of fines content and relative density not investigated (+

DEM aims

- Simulate gap-graded soils with DEM and measure stress in fines
- Could Skempton's hypothesis of reduced stress in fines be confirmed at microscale?
- Investigate link between **α** and:
	- Geometric criteria (i.e. PSD)
	- Relative density

DEM Simulations

Periodic cell containing gap-graded particles

> 300,000 particles for large simulations

Servo-controlled compression to p' = 50 kPa to 200 kPa

Relative density controlled using interparticle friction: μ = 0.0 (Dense), μ = 0.1 (Medium dense), μ = 0.3 (Loose)

Following compression friction set to μ = 0.3 for all samples

Samples tested

Gap-graded samples

Study effect of:

- **PSD (gap-ratio + fine-content)**
- **Relative density**

DEM Measurement of α-factor:

Mean stress in finer particles α \overline{p} Mean stress in all particles

Results: Linearity of alpha

Similar to experimentally observed

Results: Effect of % fines and relative density

Results: Effect of gap-ratio

Results: Effect of gap-ratio "Loose" "Dense" 1.2 1 45% 35% 45% fines fines 1 fines 0.8 α ^{0.8} α 0.6 25% fines 0.6 35% 18% 0.4 fines 18% 0.4 fines fines 25% fines 0.2 0.2 $\overline{0}$ $\overline{0}$ $\overline{2}$ 3 5 6 8 9 $\overline{0}$ 4 $\overline{7}$ $\overline{2}$ $\overline{3}$ 5 $\overline{7}$ 8 6 9 $\overline{0}$ 1 $\overline{4}$ $\mathit{D_{15}^{coarse}}$ / $\mathit{d_{85}^{fine}}$ $\mathit{D_{15}^{coarse}}$ / $\mathit{d_{85}^{fine}}$

Effect of shearing

- Results shown were for isotropic stress state (and experimental results K_0)
- No significant particle shearing
- Logical that α constant over a range of stresses?
- What happens if we shear?

Effect of shearing

Sufian et al (2021):

Gap-ratios: 5.7; 8.0; 14.3

Fines content 18% to 45%

Up to 3.3 million particles

Constant p' shearing

Effect of shearing

Converging on critical α at larger strains?

Summary

- For soils without significant rearrangement α is approximately constant over a range of stresses
- α is dependent on particle size distribution and relative density
- α changes rapidly when soils are sheared

Acknowledgements

Catherine O'Sullivan (Imperial College), Adnan Sufian (U of Queensland), Jonathan Fannin (U of British Columbia)

References

Sufian, A., Artigaut, M., Shire, T. and O'Sullivan, C. (2021) Influence of fabric on stress distribution in gap-graded soil. *Journal of Geotechnical and Geoenvironmental Engineering*, (Accepted for Publication)

Shire, T. , O'Sullivan, C., Hanley, K.J. and Fannin, R.J. (2014) Fabric and effective stress distribution in internally unstable soils. *Journal of Geotechnical and Geoenvironmental Engineering*