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Is a Cam-Clay based model able to capture suffusion effects ?

What to model ?
Suffusion may have different mechanical implications, depending on the soil initial properties.

Features for dense/dilative soils

i) Switching behaviour from dense to loose

ii) Vanishing of the strenght peak

iii) (Induced strain)

(Observations from Chang and Zhang [2011])

After Chang and Zhang [2011]
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Is a Cam-Clay based model able to capture suffusion effects ?

What to model ?
Suffusion may have different mechanical implications, depending on the soil initial properties.

After Ke and Takahashi 2014 [2014]

Features for loose/contractive soils

i) Preserved loose behaviour

ii) Residual strength reduction

iii) (Induced strains)

(Observations from Ke and Takahashi [2014])

Modelling strategy
i) Classical elasto-plasticity theory

ii) Extend an existing model (e.g. Cam-Clay based)

iii) Keep it as simple as possible

iv) Evaluate its abilities
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Kinematics of a suffusive porous medium

Hypothesis : grains are
incompressible
Classical porous medium:
Volume changes = porosity variations

∆V

V0
= φ− φ0

Accounting suffusion
According Zhang et al., [2010]:
Suffusion = modification of the reference state
(before deformation).

Suffusive porous medium :
∆V

V0
= φ−

(
φ0 + φ

er )︸ ︷︷ ︸
reference

φer : porosity generated by suffusion

EWG-IE, Febuary 2021 Modelling the plastic response of dilative and compacting soils with suffusion 4 / 15



The parent model: “Sinfonietta-Classica” (R. Nova [1988])

Loading surface and plastic potential
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The plastic flow

Non associative flow rule : ε̇
p
ij = λ̇

∂g

∂σ′
ij

The hardening law

ṗc =
pc

βp

(
−ε̇pv + κ

∥∥∥ε̇pd∥∥∥)
i) βp : plastic compliance

ii) κ : deviatoric hardening (typical for medium/dense
sands)

Loading surface and plastic flow direction
(Cambridge plane)
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Improving the parent model (1/2) : hardening law

Notation
φir : irreversible porosity

Rephrasing and improvement
Without suffusion : ε̇pv = φ̇ir

ṗc =
pc

βp

(
−φ̇ir + κ ˙̄εp

)
With suffusion : φ̇ir = ε̇pv + φ̇er

ṗc =
pc

βp

(
−ε̇pv − φ̇

er + κ ˙̄εp
)

Initial loading surface

Post-Suffusion loading surface

Characteristic State Line

Shrinking of the elasticity domain

Consequences

i) φ̇er > 0⇒ ṗc < 0 : the elasticity domain shrinks

ii) If dense sand: the peak strenght vanishes

iii) Transition in the behaviour: dense → loose

iv) Plastic strains develops while suffusion occurs
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Improving the parent model (2/2) : hardening law

From dense to loose
i) Drained triaxial loading (CD)

ii) Comparison with/without suffusion

The behaviour typology depends on the
stress state

i) if q/p′ < Z : Contractive behaviour

ii) if q/p′ > Z : Dilative behaviour

Loading path, without suffusion
Stress strain behaviour, without suffusion
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Simulations : dense gap-graded under drained triaxial compression (1/2)

Test program

1) Strain driven loading toward a given q′p

2) Suffusion-like loading :

φ
er : 0

+dφer , dσ′ = 0−−−−−−−−−−−→ φ
er
max

3) Strain driven loading

4) Mechanical failure

Parameters (calibrated with respect
to Chang and Zhang [2011])
E = 4.34MPa , ν = 0.36 , pc0 = 720 kPa , β =
1.2 , βp = 0.012 , κ = 0
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Simulations : dense gap-graded under drained triaxial compression (2/2)
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Model abilities
i) The peak strenght vanishes

ii) Dense → Loose

iii) Plastic strains develops while suffusion occurs

iv) Critical state is not affected

v) Experimental behaviour is qualitatively captured
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The case of the loose sands : characteristic state parametrization

Characteristic state
q

p′
=

6 sinϕ

3− sinϕ
⇒ ε̇

p
v = 0

Porosity parametrization

ϕ
(
φ
er ) =
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2
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(
1 + tanh
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)))
+
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(
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er ))) (1)

- Aφer
max : porosity threshold

- l : transition bandwidth

Consequences
i) Characteristic state zone

ii) Transition from contractive to ↔ dilative

iii) Reduction of residual strenght

Characteristic state zone

0 Aφ ermax φ ermax
φ er

ϕi

 

ϕer

ϕ

l= 0.01
l= 0.02
l= 0.04

Evolving characteristic state friction angle
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Simulations : loose gap-graded under drained triaxial compression (1/2)

Programme d’essai
1) Suffusion-like loading :

φ
er : 0

+∆φer , ∆σ′ = 0−−−−−−−−−−−→ φ
er
max

2) Strain driven loading

3) Mechanical failure

Parameters (calibrated with respect
to Ke and Takahashi [2014])
E = 3.46MPa , ν = 0.25 , pc0 = 50 kPa , β =
1.2 , βp = 0.01 , κ = 0 ,
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Simulations : loose gap-graded under drained triaxial compression (2/2)
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Model abilities
i) Loose behaviour is preserved

ii) Critical state changes

iii) Experimental behaviour is qualitatively captured

EWG-IE, Febuary 2021 Modelling the plastic response of dilative and compacting soils with suffusion 12 / 15



Conclusions and outlook

Model technical advantages
1) Simple Cam-Clay based model with few new parameters (0 or 5)

2) Suffusion induced porosity is naturally introduced as hardening variable

4) Calibration against exp. data is possible. (see for details Nova, (1988))

Model abilities
1) Strenght peak desapearance

2) Eventual residual strenght reduction

3) Change in the volumetric behaviour

4) Suffusion induced strains

Outlook
1) Poro-elastoplastic modelling

2) Proper model calibration with respect to laboratory test (triaxial apparatus, oedo-permeameter)

3) Consider the effect of suffusion induced heterogeneities (master thesis starting in feb/march 2021)
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Thank you for your attention
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