Numerical modelling of soil suffusion using Open ∇ FOAM

<u>Li-Hua LUU</u>¹, A. IZERROUKYENE^{1,2}, C.D. NGUYEN¹ N. BENAHMED¹, G. VEYLON¹, Pierre PHILIPPE¹ ¹ INRAE, RECOVER, Univ. Aix-Marseille, Aix-en-Provence, France ² LAMIH, UPHF, UMR CNRS 8201, Valenciennes, France

Nguyen et al, 2019

Erosion / Stability of hydraulic structures

France: **1 dam failure/year** 46% of failures due to internal erosion

4 types of internal erosion

Backward erosion

Contact

Piping

Suffusion

Erosion / Stability of hydraulic structures

France: 1 dam failure/year 46% of failures due to internal erosion

Detachment and migration under seepage flow of the finest soil particles within the surrounding soil skeleton formed of larger grains

Suffusion permeameter

Input veloctiy

C.D. Nguyen - Thesis Aix-Marseille (2016-2018)

Binary mixture

Fines content f = 25%

Fines d_f =0.1/0.4 mm

Coarse grains d_c= 1/2.5 mm

Suffusion permeameter

Input veloctiy

C.D. Nguyen - Thesis Aix-Marseille (2016 - 2018)

Binary mixture

Fines content f = 25%

Fines $d_f = 0.1/0.4 \text{ mm}$

Coarse grains $d_c = 1/2.5 \text{ mm}$

Preferential paths

- Increase in porosity
- Settlement
- **Preferential paths**

Suffusion permeameter

Input veloctiy

Settlement

Occurrence of heterogeneities during the erosion process

V = 0.3 cm/s**Erosion zone**

V = 0.7 cm/sExpansion of the erosion zone

C.D. Nguyen - Thesis Aix-Marseille (2016 - 2018)

Internal channelization ? → Numerical modelling

Discrete element approach

Coupling numerical methods that considers:

- Particles (DEM)
- Fluid flow (LBM, PVF...)

(Wautier et al., NAMG 2019)

Continuum approach

Computational fluid dynamics (CFD) that considers:

- Fluid flow through a porous medium
- Erosion process

"**Open**-source **F**ield **O**peration **A**nd **M**anipulation" C++ toolbox involving customized numerical solvers

Continuity equation
$$\frac{\partial \rho}{\partial t} + div(\rho \vec{u}) = 0$$

Incompressible fluid $div(\vec{u})=0$

For a porous medium: Darcy law $u = -\frac{k}{\mu} \nabla p$

For a granular material:

Kozeny-Carman
$$k = C \frac{\rho g}{\mu} \frac{e^3}{1+e} \frac{1}{A^2}$$

ho density u velocity p pressure μ viscosity

k permeability

- e void ratio
- \boldsymbol{A} specific surface

g gravity

C constant

For a

Continuity equation
$$\frac{\partial \rho}{\partial t} + div(\rho \vec{u}) = 0$$
 ρ densityIncompressible fluid $div(\vec{u}) = 0$ p pressureporous medium:Darcy law $u = -\frac{k}{\mu} \nabla p$ p pressureFor a granular material: e void ratioKozeny-Carman $k = C \frac{\rho g}{\mu} \frac{e^3}{1+e} \frac{1}{A^2}$ e void ratio A specific surface g gravity C constant

To model SUFFUSION mechanism:

- Relationship between **permeability** and grains properties of a **binary mixture** ? ٠
- Equation for the erosion process ? ٠

Local constitutive laws

Binary mixture properties

 V_f Fine grains volume, d_f diameter, N_f number V_c Coarse grains volume, d_c diameter, N_c number

Fines content
$$f = \frac{V_f}{V_s}$$
 V_v Void volumeVoid ratio $e = \left((1-f)\frac{V_t}{V_c}\right) - 1$ V_v Solid volumeVoid ratio V_t Total volume

Contact surface of the grains $\Sigma = N_f \pi d_f^2 + N_c \pi d_c^2$

Mass balance
$$fV_S = N_f \frac{\pi}{6} d_f^3$$

 $(1-f)V_S = N_c \frac{\pi}{6} d_c^3$ $\Sigma = fV_c \frac{6}{d_f} + (1-f)V_S \pi \frac{6}{d_c}$

I/

Binary mixture properties

 $|V_f$ Fine grains volume, d_f diameter, N_f number V_c Coarse grains volume, d_c diameter, N_c number

Fines content
$$f = \frac{v_f}{V_S}$$
 V_v Void volumeVoid ratio $e = \left((1-f)\frac{V_t}{V_c}\right) - 1$ V_v Solid volumeVoid ratio V_t Total volume

Contact surface of the grains $\Sigma = N_f \pi d_f^2 + N_c \pi d_c^2$

Mass balance $fV_S = N_f \frac{\pi}{6} d_f^3$ $(1-f)V_S = N_c \frac{\pi}{6} d_c^3$ $\sum = fV_c \frac{6}{d_f} + (1-f)V_S \pi \frac{6}{d_c}$ $A = \frac{\Sigma}{V_S}$ Kozeny-Carman permeability $k = C \frac{\rho g}{\mu} \frac{e^3}{1+e} \frac{1}{A^2}$

→ Local constitutive laws
$$\begin{vmatrix} f \\ e \end{vmatrix}$$
 Void ratio

Relationship for the **permeability**

$$k(f) = k(0) \frac{e(f)^3}{1 + e(f)} \frac{1 + e(0)}{e(0)^3} \left(\frac{1}{1 + \left(\frac{d_c - d_f}{d_f}\right)f}\right)^2$$

Relationship for the **permeability**

$$k(f) = k(0) \frac{e(f)^3}{1 + e(f)} \frac{1 + e(0)}{e(0)^3} \left(\frac{1}{1 + \left(\frac{d_c - d_f}{d_f}\right)f}\right)^2$$

Local **EROSION** law **Threshold**
$$\frac{\partial f}{\partial t} = -ef(||u|| - u_t)$$

"**Open**-source **F**ield **O**peration **A**nd **M**anipulation" C++ toolbox involving customized numerical solvers

"**Open**-source **F**ield **O**peration **A**nd **M**anipulation" C++ toolbox involving customized numerical solvers

Internal channelization

10/16

Internal channelization

11/16

Internal channelization

How about inside the sample?

Nguyen et al. Acta Geotech. (2019)

Before suffusion

Micro-CT data

High heterogeneities due to boundary conditions

Input smoothed data

After suffusion

Micro-CT data

→ Qualitative Agreement BUT

x Settlement is not taken into accountx Quantitative prediction – Calibration ?

Model equations for suffusion

Local erosion law
$$\frac{\partial f}{\partial t} = -ef(||u|| - u_t)$$

Local constitutive law for permeability $k(f) = k(0) \frac{e(f)^3}{1+e(f)} \frac{1+e(0)}{e(0)^3} \left(\frac{1}{1+\left(\frac{d_c-d_f}{d_f}\right)f}\right)^2$

Internal channelization

Triggered by a certain level of heterogeneity at the initial state Normal distribution $f = f_0 \pm \Delta f$ — Parametric study

Comparison with micro-CT data

High shear intensity near the sample boundaries

Thank you for your attention