

Material susceptibility to suffusion: from a hydro mechanical characterization to the numerical simulation

Marot D., Bendahmane F., Gelet R., Nguyen N.S., Sibille L. Guihéneuf L., Leroy L., Fournol D. Le V.T., Rochim A., Tran D.M., Zhang L., Zhong C.

UMR CNRS 6183

Main conditions for suffusion onset

Venn diagram (Garner & Fannin, 2010)

- size of the fine particles < size of the constrictions ٠
- volume of fine particles < volume of voids •
- flow velocity must be high enough •

(Fell & Fry, 2013)

Whole development, complex process

→ Hydraulic loading & soil responses coupled

 \rightarrow No initiation of suffusion

To prevent an underestimation of the erodibility

→ Test under multi-staged hydraulic gradients

Stable state **→** eroded state

Different suffusion developments according to the applied hydraulic loading path

→ how to **model** the hydraulic loading ?

Constant hydraulic gradient i

Auto filtration

→ low velocity and low erosion

So **velocity** could model the hydraulic load

→ v, i: both have to be considered by the power

Analogy: current and electric voltage

Both are used to model the electrical bias

by the computation of the **power**

No expended energy \rightarrow no expended \in

Constant velocity v

Preferential flow paths

→ Low i and low erosion

➔ Same velocity but different rates of erosion

Energy based method

Power expended by interstitial seepage flow which can induce suffusion power transferred from fluid to solid particles: negligible

Sibille et al., (2015). Internal erosion in granular media: direct numerical simulations and energy interpretation. Hydrological Processes, Vol. 29, Issue 9, 2149-2163)

$$P_{\rm flow} = \left(\gamma_{\rm w} \, \Delta z + \Delta P \right) \, Q = \gamma_{\rm w} \, \Delta h \, Q$$

Hydraulic loading path

Expended energy

$$E_{flow} = \sum P(t) \Delta t$$

At the stable state

Erosion resistance index

Marot D., Rochim A., Nguyen H.H., Bendahmane F., Sibille L. (2016). Assessing the susceptibility of gap graded soils to internal erosion: proposition of a new experimental methodology. Nat. Hazards, 83(1): 365-388. DOI 10.1007/s11069-016-2319-8.

Triaxial erodimeter: specimen length 50-100mm

Zhong C. et al. (2018). Comparison of erodimeters and interpretative methods for suffusion susceptibility characterization. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 144(9): 04018067.

 \rightarrow I_a appears intrinsic, at the time and spatial scales tested in laboratory

9 physical parameters easy to measure \rightarrow estimation of I_a

➔ optimization of soil characterization

Localization of « weaker » zones in relative

Le V.T. et al. (2018). Suffusion susceptibility investigation by energy based method and statistical analysis Canadian Geotechnical Journal. 55(1), pp 57-68

8 zones have a larger suffusion potential in relative to the rest of the structure

$$I_{\alpha}$$
 < 6,95 and P_{flow} > 1.4 10⁻³ W

Zhang et al. (2018). A method to assess the suffusion susceptibility of core soils in zoned dams based on construction data. European Journal of Environmental and Civil Engineering, 23(5), pp 626-644

At a given time, no information about the kinetics

Model Introduction

Results

Perspective

For the kinetics: erosion law

$$\frac{\overline{m}_{cum}(t) - \overline{m}_{sat}}{\overline{m}_{max} - \overline{m}_{sat}} = \left(\frac{\overline{E}_{cum}(t)}{\overline{E}_{max}}\right)^{b(t)}$$

- \overline{m}_{max} and \overline{E}_{max} are constants
- \overline{m}_{sat} is an initial value
- -b(t) is a parameter that describes the kinetics
- b(t) < 1 : rapid suffusion
- b(t) > 1 : slow suffusion

 $\overline{m}_{max} = 10^{-I_{\alpha}} \overline{E}_{max}$

$$\boldsymbol{b}(t, t_{smoothed}) = \frac{\overline{P}_{smoothed}(t, t_{smoothed})}{\overline{P}_{flow}(t)}$$

Introduction Model Results Perspective

Time evolution of eroded mass

Kodieh et al. (2020). A study of suffusion kinetics inspired from experimental data: comparison of three different approaches. Acta Geotechnica. DOI: 10.1007/s11440-020-01016-5

Spatial distribution of the variation of the percentage of fines after suffusion

Gelet et al. (submitted). Analysis of suffusion in cohesionless soils: model, experiments and simulations

in partnership with

J.R. Courivaud

F. Landstorfer

Influence of hydraulic loadings

which reflect better on-site hydraulic loadings

Influence of mechanical states

Soil's mechanical behavior

Numerical part: presentation of Q. Rousseau

Experimental benchmark

in partnership with

J. Fannin

Thank you for your attention

Acknowledgments for providing financial support for our research

Contact: didier.marot@univ-nantes.fr

