The European Working Group on Internal Erosion of Dams, Dikes and Levees and their Foundations

EWGIE online workshop on suffusion Suffusion, what's up doc?

INRA

RECOVE, INRAE – Tuesday February 2nd 2021

Fine contribution to mechanical stability and constitutive modelling strategy

Antoine Wautier¹, Qirui Ma^{3,1}, Tao Wang^{4,2}, François Nicot²

¹Aix Marseille University, INRAE, UR RECOVER, France

²University Grenoble Alpes, INRAE, UR ETNA, France

³Wuhan University, China

⁴Hohai University, China

e-mail : antoine.wautier@inrae.fr

Context

DEM inspection Multiscale modeling Conclusion and outlook

> Suffusion relationship with fine grains

What are the consequences of fine particles in terms of **mechanical stability**?

seepage velocity

confinement

differential stress

dynamic stress

p.2

Incremental strain responses

Second order work envelopes

> Artificial microstructures and stability analysis

Context

Conclusion and outlook

> Fine content influence

- Gap graded materials
 - $D_{coarse} = 10 D_{fine}$
 - Uniform distribution of coarse and fine radii $\frac{D_{\text{max}}}{D_{\text{min}}} = 2$

Context

• Three fine contents :

Fine content = 0%

Fine content = 5%

Same relative density (loose samples) : 10%

Tao Wang PhD (2020)

Fine content = 10%

> Fine stabilization effect

Tao Wang PhD (2020)

- 1. Cone of instability for FC = 0%
- 2. Cone shrinks for FC = 5 %
- 3. Cone vanishes for FC = 10 %

Context DEM inspection

Conclusion and outlook

> Fine effect on granular plasticity

Fine particles have a stabilisation effect:

- **1. Increase in dilatancy angle** Flow rule direction is modified
- 2. Increase strain hardening Plastic strain is reduced
- **3. No effect on the initial yield surface** Friction angle is not modified

NB : Valid for small fine contents (underfilled materials)

> The standard H-model: homogenization scheme

Conclusion and Context **DEM** inspection Multiscale modeling outlook Systematic analysis for proportional strain paths θ stress = -45° L_2 θ stress = 0° Constant volume θ strain =-90° - θ =150° 20 L1 $\theta = 180^{\circ}$ Constant volume 0.04 *θ* =210° $\theta = 150^{\circ}$ θ =225° $\theta = 180^{\circ}$ θ =240° 15 *θ* =210° 0.02 θ =270° $\theta = 225^{\circ}$ - θ =300° σ_{zz,fine} (kPa) θ *θ* =240° Constant volume *θ* =270° 0.00 Strain surface(0.05) 10 $\theta = 300^{\circ}$ Constant volume ☆ 1% deformation -0.02 3% deformation 5% deformation 5 -0.04

 $(\Delta L_1 / L_1)^2 + (\Delta L_2 / L_2)^2 = 0.05$

0.00

 $\Delta L_2/L_2$

0.02

0.04

 θ strain =0

-0.04

-0.02

 $\Delta L_{1}/L_{1}$

-0.06 -

-0.06

The stress contribution of fine particles is

5

10

 $\sigma_{\!\scriptscriptstyle xx, {\rm fine}} \, ({\rm kPa})$

15

quasi linear with strain intensity

 θ strain = 90°

Slight anisotropy

0.06

 θ stress = 45°

20

Context

Proposed model

Equivalent fine stress contribution

$$\sigma = \sqrt{(\sigma_{xx})^2 + (\sigma_{zz})^2}$$

Conclusion and outlook

Done

- DEM simulations showed that fine particles have a stabilisation effect:
 - 1. Increase in dilatancy angle
 - 2. Increase strain hardening
 - No effect on the initial yield surface 3.
- An analytical relationship for the stress contribution has been derived from DEM simulations at mesoscale

Remains to be done

outlook

- Relate the model parameters to fine content and particle size ratio
- Implement the enriched version of the H-model
- Assess the effect of fluid on fine content (REV and structure scale)
- Assess the impact of suffusion on mechanical stability (material and structure scales)

The European Working Group on Internal Erosion of Dams, Dikes and Levees and their Foundations

EWGIE online workshop on suffusion Suffusion, what's up doc?

RECOVE, INRAE – Tuesday February 2nd 2021

Fine contribution to mechanical stability and constitutive modelling strategy

Antoine Wautier¹, Qirui Ma^{3,1}, Tao Wang^{4,2}, François Nicot²

σ

(a) With fine grains

(b) Without fine grains

¹Aix Marseille University, INRAE, UR RECOVER, France ²University Grenoble Alpes, INRAE, UR ETNA, France ³Wuhan University, China ⁴Hohai University, China

e-mail : antoine.wautier@inrae.fr